首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Reactions between triphosphoinositide and the basic experimental allergic encephalitogenic (EAE) protein were examined in aqueous solution and in a biphasic solvent system (chloroform-methanol-water, 8:4:3, by vol.). 2. In the absence of salt an insoluble complex (I) is formed containing triphosphoinositide and EAE protein in proportions that represent complete neutralization of lipid and protein at the pH concerned. 3. In the presence of a low concentration (0.05m) of sodium chloride an insoluble positively charged complex (II) forms. It contains triphosphoinositide and EAE protein in a lower concentration ratio than complex I. This complex, which has a constant composition between pH7.5 and pH10, can take up additional micellar triphosphoinositide producing complex I, which can then be solubilized by excess of triphosphoinositide. 4. The complexes are dissociated by more concentrated sodium chloride solutions and low concentrations of calcium chloride, suggesting that they are largely stabilized by electrostatic bonds. The protein recovered after dissociation is immunologically active and has the same electrophoretic mobility as the original. 5. Water-insoluble ternary complexes containing triphosphoinositide, EAE protein and large amounts of phosphatidylcholine can be prepared. From these, chloroform-methanol (2:1, v/v) extracts only phosphatidylcholine. 6. An insoluble ternary complex of Ca(2+) ion, EAE protein and triphosphoinositide can be prepared by adding calcium chloride to a complex I preparation solubilized by excess of triphosphoinositide. 7. EAE protein will also form complexes with other acidic phospholipids, e.g. phosphatidic acid, phosphatidylserine and phosphatidylinositol, but not with phosphatidylcholine or phosphatidylethanolamine. The phosphatidylinositol and phosphatidylserine complexes are chloroform soluble, i.e. proteolipids. 8. The possibility that complexes between EAE protein and acidic phospholipids occur in vivo is discussed. Triphosphoinositide and EAE protein occur in ox brain myelin in approximately the same concentration ratios as they do in complex II, formed at physiological salt concentration and pH.  相似文献   

2.
The correlation between the ATP-dependent Ca2+ binding and the phosphorylation of the membranes from swine and bovine erythrocytes was studied. The Ca2+ binding was measured by using 45CaCl2, and the phosphorylation by [gamma-32P]ATP was studied with the technique of SDS polyacrylamide gel electrophoresis. 200 mM NaCl and KCl markedly repressed the Ca2+ binding of swine erythrocyte membranes. The radioactivity of 32P-labelled membranes was revealed mainly in 250,000 dalton protein and a lipid fraction. NaCl and KCl also repressed the phosphorylation of the lipid which was identified as triphosphoinositide by paper chromatography. The membranes prepared from trypsin-digested erythrocytes completely retained the Ca2+-binding activity, and lost 30% of (Ca2+ + Mg2+)-ATPase activity. The Ca2+-binding and ATPase activity of isolated membranes decreased to 55% and to 0%, respectively, by tryptic digestion. Neither the Ca2+ binding nor the phosphorylation of polyphosphoinositides were detected in bovine erythrocyte membranes. These results suggest that the formation of triphosphoinositide rather than the (C2+ + Mg2+)-ATPase of membranes is linked to the ATP-dependent Ca2+ binding of erythrocyte membranes.  相似文献   

3.
1. When complete hydrolysis of glycerophosphlipids and sphingomyelin in the outer membrane leaflet is brought about by treatment of intact red blood cells with phospholipase A2 and sphingomyelinase C, the (Ca2+ + Mg2+)-ATPase activity is not affected. 2. Complete hydrolysis of sphingomyelin, by treatment of leaky ghosts with spingomyelinase C, does not lead to an inactivation of the (Ca2+ + Mg2+)-ATPase. 3. Treatment of ghosts with phospholipase A2 (from either procine pancreas of Naja naja venom), under conditions causing an essentially complete hydrolysis of the total glycerophospholipid fraction of the membrane, results in inactivation of the (Ca2+ + Mg2+)-ATPase by some 80--85%. The residual activity is lost when the produced lyso-compounds (and fatty acids) are removed by subsequent treatment of the ghosts with bovine serum albumin. 4. The degree of inactivation of the (Ca2+ + Mg2+)-ATPase, caused by treatment of ghosts with phospholipase C, is directly proportional to the percentage by which the glycerophospholipid fraction in the inner membrane layer is degraded. 5. After essentially complete inactivation of the (Ca2+ + Mg2+)-ATPase by treatment of ghosts with phospholipase C from Bacillus cereus, the enzyme is reactivated by the addition of any of the glycerophospholipids, phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine or lysophosphatidylcholine, but not by addition of sphingomyeline, free fatty acids or the detergent Triton X-100. 6. It is concluded that only the glycerophospholipids in the human erythrocyte membrane are involved in the maintenance of the (Ca2+ + Mg2+)-ATPase activity, and in particular that fraction of these phospholipids located in the inner half of the membrane.  相似文献   

4.
The diphosphoinositide kinase of rat brain   总被引:11,自引:9,他引:2       下载免费PDF全文
1. The supernatant fraction of adult rat brain contains a diphosphoinositide kinase. 2. Formation of triphosphoinositide by the enzyme in the presence of ATP and Mg(2+) ions was shown with labelled ATP or labelled diphosphoinositide. 3. The kinase was also activated by Ca(2+), Mn(2+) and Co(2+) ions, but to a smaller extent than by Mg(2+) ions. 4. In the presence of optimum Mg(2+) ion concentration the enzyme was inhibited by Ca(2+) ions. 5. Activity did not depend on thiol groups and the pH optimum was 7.3. 6. The dialysed supernatant fraction had no diglyceride kinase activity and negligible phosphatidylinositol kinase activity. 7. Triphosphoinositide phosphomonoesterase was present but showed little activity under the conditions used to assay the kinase. 8. Diphosphoinositide kinase was purified by ammonium sulphate fractionation, ethanol treatment and chromatography on Sephadex G-200. 9. This purification removed much of the triphosphoinositide phosphomonoesterase.  相似文献   

5.
Homogenates of Crithidia fasciculata (a species of Trypanosomidae) were shown to contain a phosphatase (EC 3.1.3.36) and a phosphodiesterase (EC 3.1.4.11) which hydrolyse triphosphoinositides. Approximately 30% of the diesterase and most of the phosphatase are present in the soluble fraction. The triphosphoinositide phosphatase is specifically dependent upon Mg(2+) and is stable to storage with or without freezing. The triphosphoinositide phosphodiesterase requires Ca(2+) and is inactivated during storage. Both activities are maximal in the presence of cetyltrimethylammonium bromide and require protection or reactivation by GSH or dithiothreitol. Unlike similar mammalian enzymes the protozoal triphosphoinositide phosphatase does not hydrolyse diphosphoinositides. The two enzymes may be separated by (NH4)2SO4 fractionation and gel filtration on Sephadex G-200.  相似文献   

6.
1. A method is presented for the determination of the di- and tri-phosphoinositide in animal tissues. 2. The polyphosphoinositides are quantitatively extracted into chloroform-methanol-hydrochloric acid solvent after a preliminary chloroform-methanol (1:1, v/v) extraction to remove the bulk of the other phospholipids. On washing this extract with n-hydrochloric acid the polyphosphoinositides pass completely into the lower chloroform-rich phase. Their concentrations in the lower phase are determined by chromatography on formaldehyde-treated paper or chromatography and ionophoresis of the acid hydrolysis products. 3. When guinea-pig brain is extracted by the method of Folch (1942), considerable hydrolysis of the triphosphoinositide and accumulation of diphosphoinositide occurs during the initial acetone extraction. 4. The tri- and di-phosphoinositide contents of rat and guinea-pig brain decline substantially within a few minutes after death. 5. The concentrations of tri- and di-phosphoinositide in rat brain are not changed by insulin-hypoglycaemia or electrical stimulation. 6. Examination of frozen rat tissues showed that the brain contained the highest concentration of polyphosphoinositides. Much smaller amounts are present in kidney, and only trace quantities in liver and lung. None could be detected in spleen, heart and skeletal muscle.  相似文献   

7.
1. Addition of the bivalent ionophore A23187 to synaptosomes isolated from guinea-pig brain cortex and labelled with [(32)P]phosphate in vitro or in vivo caused a marked loss of radioactivity from phosphatidyl-myo-inositol 4-phosphate (diphosphoinositide) and phosphatidyl-myo-inositol 4,5-bisphosphate (triphosphoinositide) and stimulated labelling of phosphatidate. No change occurred in the labelling of other phospholipids. 2. In conditions that minimized changes in internal Mg(2+) concentrations, the effect of ionophore A23187 on labelling of synaptosomal di- and tri-phosphoinositide was dependent on Ca(2+) and was apparent at Ca(2+) concentrations in the medium as low as 10(-5)m. 3. An increase in internal Mg(2+) concentration stimulated incorporation of [(32)P]phosphate into di- and tri-phosphoinositide, whereas lowering internal Mg(2+) decreased labelling. 4. Increased labelling of phosphatidate was independent of medium Mg(2+) concentration and apparently only partly dependent on medium Ca(2+) concentration. 5. The loss of label from di- and tri-phosphoinositide caused by ionophore A23187 was accompanied by losses in the amounts of both lipids. 6. Addition of excess of EGTA to synaptosomes treated with ionophore A23187 in the presence of Ca(2+) caused a rapid resynthesis of di- and tri-phosphoinositide and a further stimulation of phosphatidate labelling. 7. Addition of ionophore A23187 to synaptosomes labelled in vivo with [(3)H]inositol caused a significant loss of label from di- and tri-phosphoinositide, but not from phosphatidylinositol. There was a considerable rise in labelling of inositol diphosphate, a small increase in that of inositol phosphate, but no significant production of inositol triphosphate. 8. (32)P-labelled di- and tri-phosphoinositides appeared to be located in the synaptosomal plasma membrane. 9. The results indicate that increased Ca(2+) influx into synaptosomes markedly activates triphosphoinositide phosphatase and diphosphoinositide phosphodiesterase, but has little or no effect on phosphatidylinositol phosphodiesterase.  相似文献   

8.
MnDPDP [manganese(II) N, N'-dipyridoxylethylenediamine- N, N'-diacetate-5,5'-bis(phosphate)] is the active component of Teslascan, a contrast medium for magnetic resonance imaging of the liver. It has previously been shown that MnDPDP is rapidly dephosphorylated to the monophosphate MnDPMP and the non-phosphorylated MnPLED, and that all these substances are rapidly transmetallated to the corresponding Zn complexes. In the present study we used EPR at 9 and 230 GHz to show that no free Mn(2+) ions can be detected in the product or in a mixture of MnDPDP and human serum. Competition experiments between MnDPDP and Zn(2+), Ca(2+), and Mg(2+) ions revealed approximately 15% transmetallation with Zn(2+) in a buffer system containing metal ion concentrations similar to that in serum, whereas approximately 10% transmetallation was obtained with Ca(2+) and only negligible transmetallation was obtained with Mg(2+) under these conditions. Binding experiments with Mn(2+) added to human albumin and human serum indicate that albumin accounts for most of the protein-bound Mn(2+) in serum.  相似文献   

9.
Lens epithelium, when attached to its natural substratum, the lens capsule, can be maintained in culture for more than 2 weeks in a simple HEPES- and EDTA-buffered salt solution (HBS). In HBS, the epithelium shows the same characteristic phenomena of locomotion, initial retraction and respreading which in MEM plus serum precedes the inception of DNA synthesis. These phenomena have been shown to be dependent on extracellular Ca2+. 0.05 mM Ca2+ is necessary for maintaining cell-to-cell contacts of the in vivo epithelium. Higher concentrations of Ca2+ cause the epithelium to retract initially. In contrast, Mg2+ greatly favours cell-substratum interactions leading to the formation of lamellopodia and an initial spreading of the epithelium. After some hours in culture the epithelium changes markedly in response to extracellular Ca2+ and Mg2+; it respreads and flattens in the presence of Ca2+, while Mg2+ becomes less effective in maintaining cell-to-substratum contacts. Mg2+-dependent initial spreading is promoted at pH values near 7.0 but the Ca2+-dependent respreading requires an alkalinization of the salt solution.  相似文献   

10.
Polyphosphoinositides in myelin   总被引:25,自引:14,他引:11       下载免费PDF全文
1. On fractionation of guinea-pig forebrain homogenates by differential and gradient-density centrifugation most of the polyphosphoinositides were recovered in the myelin-rich particles. 2. The phospholipids of pure preparations of myelin contained di- and tri-phosphoinositide in proportions 2-3 times greater than in the whole-brain phospholipids. 3. Di- and tri-phosphoinositide appeared in young rat brain during the period of myelination. 4. After the administration of [(32)P]phosphate to guinea pigs the labelling of the polyphosphoinositides in isolated pure myelin was as great as in the whole brain, whereas little synthesis of the other myelin phospholipids had occurred. 5. When brain subcellular fractions were incubated with [gamma-(32)P]ATP, some triphosphoinositide labelling occurred in the myelin-rich fraction whereas the active labelling of diphosphoinositide was localized mainly in the mitochondrial fraction. 6. The Na(+), K(+) and Mg(2+) plus Ca(2+) concentrations in purified myelin have been determined. The Mg(2+) plus Ca(2+) content present showed close acid-base equivalence to the polyphosphoinositides. 7. It is concluded that di- and tri-phosphoinositide are rapidly-metabolizing components of the myelin sheath or intimately associated structures.  相似文献   

11.
1. On subcellular fractionation of rat brain homogenate, polyphosphoinositide phosphomonoesterase activity was greater in the cytosol than the membranous fractions. 2. The enzyme was purified from the cytosol by column chromatography on DEAE-cellulose, calcium phosphate gel and Sephadex G-100. 3. The final preparation of the enzyme showed a 430-fold purification over the whole homogenate and appeared to be homogeneous since it gave a single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and on isoelectric focusing. The enzyme has a relatively low molecular weight and an isoelectric point of 6.8. 4. The phosphatase showed a high affinity for triphosphoinositide. Without added Mg2+, the Km was 25 muM and V was 33 mumol Pi released/min/mg protein. 5. The enzyme hydrolysed diphosphoinositide at a slower rate than triphosphoinositide. In the presence of 10 mM Mg2+, the Km values for triphosphoinositide and diphosphoinositide were 5 muM and 25 muM respectively and V was the same for each substrate. 6. Both Mg2+ and Ca2+ activated the enzyme. While Ca2+ produced maximum activation at 100 muM, a much higher concentration of Mg2+ (10 mM) was required to elicit comparable activation. The enzyme did not show an absolute requirement for Mg2+ or Ca2+ as it exhibited low activity in the presence of 0.5 mM EDTA or EGTA. 7. The phosphatase showed maximum activity between 7.4 and 7.6. A drop in pH to 7.0 activated it almost completely, whereas an increase in pH to 8.0 halved the activity. 7.0 activated it almost completely, whereas an increase in pH to 8.0 halved the activity.  相似文献   

12.
Divalent cations in native and reaggregated mycoplasma membranes   总被引:6,自引:5,他引:1       下载免费PDF全文
The Mg(2+) content of membranes of several Mycoplasma and Acholeplasma species varied between 0.88 and 1.98 mug of Mg(2+) per mg of protein, depending on the species and on growth conditions. Ca(2+) could be detected only when it was added to the growth medium. The Mg(2+) content of isolated A. laidlawii membranes could be increased almost threefold by dialysis against 20 mm Mg(2+), whereas aggregated A. laidlawii membranes contained about six to eight times more Mg(2+) per mg of protein than the native membranes. This was taken to indicate that the molecular organization of the lipid and protein in the reaggregated membranes differs from that of the native membranes. Between 60 and 83% of the Mg(2+) in native and reaggregated A. laidlawii membranes was associated with the lipid fraction extracted with chloroform-methanol. The removal of over 80% of membrane protein by Pronase digestion did not release any significant amount of Mg(2+). Hence, most of the divalent cation appears to be bound to membrane lipids, most probably to phospholipids. Ethylenediaminetetraacetic acid released the bulk of Mg(2+) bound to the native and reaggregated A. laidlawii membranes, except for about 0.5 mug of Mg(2+) per mg of protein which was too tightly bound. Hence, a small but fairly constant amount of Mg(2+) is unavailable for chelation.  相似文献   

13.
The role of Mg ions in the hypoxanthine guanine phosphoribosyltransferase-catalyzed reaction have been studied using accurate values of proton and Mg stability constants of phosphoribosylpyrophosphate (P-Rib-PP) determined from pH titration data. The results obtained favor the conclusion that the dimagnesium salt of P-Rib-PP is the true substrate of the enzyme. The other species of P-Rib-PP do not appreciably affect the initial reaction rate. The inhibition of the hypoxanthine guanine phosphoribosyltransferase-catalyzed reaction observed at high MgCl2 concentration can be attributed to a competitive inhibition of Mg2+ with respect to the dimagnesium salt of P-Rib-PP, suggesting that these ionic species bind to the same enzyme form. At a fixed [P-Rib-PPtot], the concentration of its dimagnesium complex is a sigmoidal function of MgCl2 concentration, suggesting that caution must be employed in the interpretation of sigmoidal saturation curves for P-Rib-PP-utilizing enzymes when low and not constant concentrations of the divalent cation are used.  相似文献   

14.
Tthe properties of diphosphoinositide and triphosphoinositide phosphatases from rat kidney homogenate were studied in an assay system in which non-specific phosphatase activity was eliminated. The enzymes were not completely metal-ion dependent and were activated by Mg2+. The detergent sodium deoxycholate, Triton X-100 and Cutscum inhibited the reaction; cetyltrimethylammonium bromide only activated when added with the subtrates and in the presence Mg2+. Both enzymes had a pH optimum of 7.5. Ca2+ and Li+ both activated triphosphoinositide phosphatase, but Ca2+ inhibited and L+ had little effect on diphosphoinositide phosphatase. Cyclic AMP had no effect on either enzyme. The enzymes were three times more active in kidney cortex than in the medulla. On subcellular fractionation of kidney-cortex homogenates by differential and density-gradient centrifugation, the distribution of the enzymes resembled that of thiamin pyrophosphatase (assayed in the absence of ATP), suggesting localization in the Golgi complex. However, the distribution differed from that of the liver Golgimarker galactosyltransferase. Activities of both diphosphoinositide and triphosphoinositide phosphatases and thiamin pyrophosphatase were low in purified brush-border fragments. Further experiments indicate that at least part of the phosphatase activity is soluble.  相似文献   

15.
We demonstrated that mouse spermatozoa cleave their DNA into approximately 50 kb loop-sized fragments with topoisomerase IIB when treated with MnCl(2) and CaCl(2) in a process we term sperm chromatin fragmentation (SCF). SCF can be reversed by EDTA. A nuclease then further degrades the DNA in a process we term sperm DNA degradation (SDD). MnCl(2) alone could elicit this activity, but CaCl(2) had no effect. Here, we demonstrate the existence of a nuclease in the vas deferens that can be activated by ethylene glycol tetraacetic acid (EGTA) to digest the sperm DNA by SDD. Spermatozoa were extracted with salt and dithiothreitol to remove protamines and then incubated with EGTA. Next, the EGTA was removed and divalent cations were added. We found that Mn(2+), Ca(2+), or Zn(2+) could each activate SDD in spermatozoa but Mg(2+) could not. When the reaction was slowed by incubation on ice, EGTA pretreatment followed by incubation in Ca(2+) elicited the reversible fragmentation of sperm DNA evident in SCF. When the reactions were then incubated at 37 degrees C they progressed to the more complete degradation of DNA by SDD. EDTA could also be used to activate the nuclease, but required a higher concentration than EGTA. This EGTA-activatable nuclease activity was found in each fraction of the vas deferens plasma: in the spermatozoa, in the surrounding fluid, and in the insoluble components in the fluid. These results suggest that this sperm nuclease is regulated by a mechanism that is sensitive to EGTA, possibly by removing inhibition of a calcium binding protein.  相似文献   

16.
The preparation of ox heart myosin and its partial digestion with cellulose-bound papain is described. A procedure is outlined by which heavy meromyosin subfragment 1 can be covalently bound to a cellulose ion-exchange matrix. Attachment of heavy meromyosin subfragment 1 to the insoluble matrix results in a change in the ion specificity towards ATP hydrolysis. Unlike the soluble enzyme the bound form is activated by both Ca(2+) and Mg(2+). Maximal activation by Ca(2+) occurred at a lower concentration for the bound enzyme. Mg(2+) activates at a concentration which causes near-maximal inhibition of the Ca(2+)-activated adenosine triphosphatase (ATPase) of the non-bound enzyme. The Mg(2+)-activated ATPase of the bound enzyme was in turn inhibited by the presence of Ca(2+). The activation by Mg(2+) resembles the characteristic enzymic action of the actin-subfragment 1 complex.  相似文献   

17.
Calbindin D28k exhibits properties characteristic of a Ca2+ sensor   总被引:3,自引:0,他引:3  
Calbindin D(28k) is a member of the calmodulin superfamily of Ca(2+)-binding proteins and contains six EF-hands. The protein is generally believed to function as a Ca(2+) buffer, but the studies presented in this work indicate that it may also act as a Ca(2+) sensor. The results show that Mg(2+) binds to the same sites as Ca(2+) with an association constant of approximately 1.4.10(3) m(-1) in 0.15 m KCl. The four high affinity sites in calbindin D(28k) bind Ca(2+) in a non-sequential, parallel manner. In the presence of physiological concentrations of Mg(2+), the Ca(2+) affinity is reduced by a factor of 2, and the cooperativity, which otherwise is modest, increases. Based on the binding constants determined in the presence of physiological salt concentrations, we estimate that at the Ca(2+) concentration in a resting cell calbindin D(28k) is saturated to 40-75% with Mg(2+) but to less than 9% with Ca(2+). In contrast, the protein is expected to be nearly fully saturated with Ca(2+) at the Ca(2+) level of an activated cell. A substantial conformational change is observed upon Ca(2+) binding, but only minor structural changes take place upon Mg(2+) binding. This suggests that calbindin D(28k) undergoes Ca(2+)-induced structural changes upon Ca(2+) activation of a cell. Thus, calbindin D(28k) displays several properties that would be expected for a protein involved in Ca(2+)-induced signal transmission and hence may function not only as a Ca(2+) buffer but also as a Ca(2+) sensor. Digestion patterns resulting from limited proteolysis of the protein suggest that the loop of EF-hand 2, a variant site that does not bind Ca(2+), becomes exposed upon Ca(2+) binding.  相似文献   

18.
The actin-activated Mg(2+)-ATPase activity of Acanthamoeba myosins I depends on phosphorylation of their single heavy chains by myosin I heavy chain kinase. Kinase activity is enhanced > 50-fold by autophosphorylation at multiple sites. The rate of kinase autophosphorylation is increased approximately 20-fold by acidic phospholipids independent of the presence of Ca2+ and diglycerides. We show in this paper that Ca(2+)-calmodulin inhibits phospholipid-stimulated autophosphorylation of myosin I heavy chain kinase and hence also inhibits the catalytic activity of unphosphorylated kinase in the presence of phospholipid. Ca(2+)-calmodulin does not inhibit kinase activity in the absence of phospholipid. Micromolar Ca(2+)-calmodulin also inhibits binding of myosin I heavy chain kinase to phospholipid vesicles and purified plasma membranes. Proteolytic removal of a 7-kDa NH2-terminal segment from the 97-kDa kinase prevents binding of both calmodulin and phospholipid; therefore, we propose that they bind to the same or overlapping sites. These data provide a mechanism by which Ca2+ could inhibit the actin-activated Mg(2+)-ATPase activity of the myosin I isozymes in vivo and thus regulate myosin I-dependent motile activities.  相似文献   

19.
1. The distribution of individual phospholipids was determined in hen brain and compared with that in sciatic nerve obtained in a previous investigation. Sciatic nerve is more enriched in the myelinic phospholipids ethanolamine plasmalogen, phosphatidylserine and sphingomyelin, but it contains relatively less triphosphoinositide, and much less diphosphoinositide, than the brain. 2. The course of incorporation of intraperitoneally injected (32)P into the acid-soluble phosphorus, phosphoinositides and total phospholipids of hen brain and sciatic nerve was followed. Although the maximum specific radioactivity in sciatic nerve of acid-soluble phosphorus is 4.5 times, and that of triphosphoinositide six times, that in the brain, the relative rate of triphosphoinositide phosphorus synthesis per gram of brain is three times that in sciatic nerve. 3. Administration of the demyelinating agent tri-o-cresyl phosphate to hens has no significant effect on the amounts or the rate of (32)P incorporation into the total phospholipids of the sciatic nerve. However, the rate of incorporation of (32)P into triphosphoinositide, although not its concentration, is raised from the first day after administration of the drug and remains thus 13 and 23 days later. 4. The incorporation of (32)P into polyphosphoinositides of hen brain slices in vitro was studied. The recovery of triphosphoinositide from the slices is markedly increased in the presence of EDTA, although the rate of incorporation of (32)P is unaffected. The incorporation of (32)P is dependent on the presence of Mg(2+) and Ca(2+) in the medium, and is decreased when Na(+) is replaced with K(+) or cholinium ions.  相似文献   

20.
The (Ca2+ + Mg2+)-ATPase from red cell membranes, purified by means of a calmodulin-containing affinity column according to the method of Gietzen et al. (Gietzen, K., Tejcka, M. and Wolf, H.U. (1980) Biochem. J. 189, 81-88) with either phosphatidylcholine or phosphatidylserine as phospholipid is characterized. The phosphatidylcholine preparation can be activated by calmodulin, while the phosphatidylserine preparation is fully activated without calmodulin. The enzyme shows a biphasic ATP dependence with two Km values of 3.5 and 120 microM. The enzyme is phosphorylated by ATP in the presence of Ca2+ only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号