首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meyer K  Beyene A  Bowlin TL  Basu A  Ray R 《Journal of virology》2004,78(23):12838-12847
We have previously reported that a pseudotype virus generated by reconstitution of hepatitis C virus (HCV) chimeric envelope glycoprotein E1-G or E2-G on the surface of a temperature-sensitive mutant of vesicular stomatitis virus (VSVts045) interacts independently with mammalian cells to initiate infection. Here, we examined whether coexpression of both of the envelope glycoproteins on pseudotype particles would augment virus infectivity and/or alter the functional properties of the individual subunits. Stable transfectants of baby hamster kidney (BHK) epithelial cells expressing either one or both of the chimeric envelope glycoproteins of HCV on the cell surface were generated. The infectious titer of the VSV pseudotype, derived from a stable cell line incorporating both of the chimeric glycoproteins of HCV, was approximately 4- to 5-fold higher than that of a pseudotype bearing E1-G alone or approximately 25- to 30-fold higher than that of E2-G alone when assayed with a number of mammalian cell lines. Further studies suggested that that the E1-G/E2-G or E2-G pseudotype was more sensitive to the inhibitory effect of heparin than the E1-G pseudotype. Treatment of the E1-G/E2-G pseudotype with a negatively charged sulfated sialyl lipid (NMSO3) displayed a approximately 4-fold-higher sensitivity to neutralization than pseudotypes with either of the two individual glycoproteins. In contrast, VSVts045, used as a backbone for the generation of pseudotypes, displayed at least 20-fold-higher sensitivity to NMSO3-mediated inhibition of virus plaque formation. The effect of low-density lipoprotein on the E1-G pseudotype was greater than that apparent for the E1-G/E2-G pseudotype. The treatment of cells with monoclonal antibodies to CD81 displayed an inhibitory effect upon the pseudotype with E1-G/E2-G or with E2-G alone. Taken together, our results indicate that the HCV E1 and E2 glycoproteins have separable functional properties and that the presence of these two envelope glycoproteins on VSV/HCV pseudotype particles increases infectious titer.  相似文献   

2.
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that assemble as a noncovalent heterodimer which is mainly retained in the endoplasmic reticulum. Because assembly into particles and secretion from the cell lead to structural changes in viral envelope proteins, characterization of the proteins associated with the virion is necessary in order to better understand how they mature to be functional in virus entry. There is currently no efficient and reliable cell culture system to amplify HCV, and the envelope glycoproteins associated with the virion have therefore not been characterized yet. Recently, infectious pseudotype particles that are assembled by displaying unmodified HCV envelope glycoproteins on retroviral core particles have been successfully generated. Because HCV pseudotype particles contain fully functional envelope glycoproteins, these envelope proteins, or at least a fraction of them, should be in a mature conformation similar to that on the native HCV particles. In this study, we used conformation-dependent monoclonal antibodies to characterize the envelope glycoproteins associated with HCV pseudotype particles. We showed that the functional unit is a noncovalent E1E2 heterodimer containing complex or hybrid type glycans. We did not observe any evidence of maturation by a cellular endoprotease during the transport of these envelope glycoproteins through the secretory pathway. These envelope glycoproteins were recognized by a panel of conformation-dependent monoclonal antibodies as well as by CD81, a molecule involved in HCV entry. The functional envelope glycoproteins associated with HCV pseudotype particles were also shown to be sensitive to low-pH treatment. Such conformational changes are likely necessary to initiate fusion.  相似文献   

3.
Glycoproteins derived from most retroviruses and from several families of enveloped viruses can form infectious pseudotypes with murine leukemia virus (MLV) and lentiviral core particles, like the MLV envelope glycoproteins (Env) that are incorporated on either virus type. However, coexpression of a given glycoprotein with heterologous core proteins does not always give rise to highly infectious viral particles, and restrictions on pseudotype formation have been reported. To understand the mechanisms that control the recruitment of viral surface glycoproteins on lentiviral and retroviral cores, we exploited the fact that the feline endogenous retrovirus RD114 glycoprotein does not efficiently pseudotype lentiviral cores derived from simian immunodeficiency virus, whereas it is readily incorporated onto MLV particles. Our results indicate that recruitment of glycoproteins by the MLV and lentiviral core proteins occurs in intracellular compartments and not at the cell surface. We found that Env and core protein colocalization in intracytoplasmic vesicles is required for pseudotype formation. By investigating MLV/RD114 Env chimeras, we show that signals in the cytoplasmic tail of either glycoprotein differentially influenced their intracellular localization; that of MLV allows endosomal localization and hence recruitment by both lentiviral and MLV cores. Furthermore, we found that upon membrane binding, MLV core proteins could relocalize Env glycoproteins in late endosomes and allow their incorporation on viral particles. Thus, intracellular colocalization, as well as interactions between Env and core proteins, may influence the recruitment of the glycoprotein onto viral particles and generate infectious pseudotyped viruses.  相似文献   

4.
We recently reported that retroviral pseudotypes bearing the hepatitis C virus (HCV) strain H and Con1 glycoproteins, genotype 1a and 1b, respectively, require CD81 as a coreceptor for virus-cell entry and infection. Soluble truncated E2 cloned from a number of diverse HCV genotypes fail to interact with CD81, suggesting that viruses of diverse origin may utilize different receptors and display altered cell tropism. We have used the pseudotyping system to study the tropism of viruses bearing diverse HCV glycoproteins. Viruses bearing these glycoproteins showed a 150-fold range in infectivity for hepatoma cells and failed to infect lymphoid cells. The level of glycoprotein incorporation into particles varied considerably between strains, generally reflecting the E2 expression level within transfected cells. However, differences in glycoprotein incorporation were not associated with virus infectivity, suggesting that infectivity is not limited by the absolute level of glycoprotein. All HCV pseudotypes failed to infect HepG2 cells and yet infected the same cells after transduction to express human CD81, confirming the critical role of CD81 in HCV infection. Interestingly, these HCV pseudotypes differed in their ability to infect HepG2 cells expressing a panel of CD81 variants, suggesting subtle differences in the interaction of CD81 residues with diverse viral glycoproteins. Our current model of HCV infection suggests that CD81, together with additional unknown liver specific receptor(s), mediate the virus-cell entry process.  相似文献   

5.
Development of a successful hepatitis C virus (HCV) vaccine requires the definition of neutralization epitopes that are conserved among different HCV genotypes. Five human monoclonal antibodies (HMAbs) are described that cross-compete with other antibodies to a cluster of overlapping epitopes, previously designated domain B. Each HMAb broadly neutralizes retroviral pseudotype particles expressing HCV E1 and E2 glycoproteins, as well as the infectious chimeric genotype 1a and genotype 2a viruses. Alanine substitutions of residues within a region of E2 involved in binding to CD81 showed that critical E2 contact residues involved in the binding of representative antibodies are identical to those involved in the binding of E2 to CD81.  相似文献   

6.
CD81 has been described as a putative receptor for hepatitis C virus (HCV); however, its role in HCV cell entry has not been characterized due to the lack of an efficient cell culture system. We have examined the role of CD81 in HCV glycoprotein-dependent entry by using a recently developed retroviral pseudotyping system. Human immunodeficiency virus (HIV) pseudotypes bearing HCV E1E2 glycoproteins show a restricted tropism for human liver cell lines. Although all of the permissive cell lines express CD81, CD81 expression alone is not sufficient to allow viral entry. CD81 is required for HIV-HCV pseudotype infection since (i) a monoclonal antibody specific for CD81 inhibited infection of susceptible target cells and (ii) silencing of CD81 expression in Huh-7.5 hepatoma cells by small interfering RNAs inhibited HIV-HCV pseudotype infection. Furthermore, expression of CD81 in human liver cells that were previously resistant to infection, HepG2 and HH29, conferred permissivity of HCV pseudotype infection. The characterization of chimeric CD9/CD81 molecules confirmed that the large extracellular loop of CD81 is a determinant for viral entry. These data suggest a functional role for CD81 as a coreceptor for HCV glycoprotein-dependent viral cell entry.  相似文献   

7.
Meyer K  Banerjee A  Frey SE  Belshe RB  Ray R 《PloS one》2011,6(8):e23699
We have completed a phase 1 safety and immunogenicity trial with hepatitis C virus (HCV) envelope glycoproteins, E1 and E2, with MF59 adjuvant as a candidate vaccine. Neutralizing activity to HCV genotype 1a was detected in approximately 25% of the vaccinee sera. In this study, we evaluated vaccinee sera from poor responders as a potential source of antibody dependent enhancement (ADE) of HCV infection. Sera with poor neutralizing activity enhanced cell culture grown HCV genotype 1a or 2a, and surrogate VSV/HCV pseudotype infection titer, in a dilution dependent manner. Surrogate pseudotypes generated from individual HCV glycoproteins suggested that antibody to the E2 glycoprotein; but not the E1 glycoprotein, was the principle target for enhancing infection. Antibody specific to FcRII expressed on the hepatic cell surface or to the Fc portion of Ig blocked enhancement of HCV infection by vaccinee sera. Together, the results from in vitro studies suggested that enhancement of viral infectivity may occur in the absence of a strong antibody response to HCV envelope glycoproteins.  相似文献   

8.
Many host cell surface proteins, including viral receptors, are incorporated into enveloped viruses. To address the functional significance of these host proteins, murine leukemia viruses containing the cellular receptors for Rous sarcoma virus (Tva) or ecotropic murine leukemia virus (MCAT-1) were produced. These receptor-pseudotyped viruses efficiently infect cells expressing the cognate viral envelope glycoproteins, with titers of up to 105 infectious units per milliliter for the Tva pseudotypes. Receptor and viral glycoprotein specificity and functional requirements are maintained, suggesting that receptor pseudotype infection recapitulates events of normal viral entry. The ability of the Tva and MCAT-1 pseudotypes to infect cells efficiently suggests that, in contrast to human immunodeficiency virus type 1 entry, neither of these retroviral receptors requires a coreceptor for membrane fusion. In addition, the ability of receptor pseudotypes to target infected cells suggests that they may be useful therapeutic reagents for directing infection of viral vectors. Receptor-pseudotyped viruses may be useful for identifying new viral receptors or for defining functional requirements of known receptors. Moreover, this work suggests that the production of receptor pseudotypes in vivo could provide a mechanism for expanded viral tropism with potential effects on the pathogenesis and evolution of the virus.  相似文献   

9.
Functional hepatitis C virus envelope glycoproteins   总被引:8,自引:0,他引:8  
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that are released from HCV polyprotein by signal peptidase cleavage. These proteins assemble as a noncovalent heterodimer that is retained in the endoplasmic reticulum. The transmembrane domains of E1 and E2 are multifunctional and play a major role in the biogenesis of E1E2 heterodimer. Because HCV does not replicate efficiently in cell culture, surrogate models have been developed to study some steps of its life cycle. Recently, infectious pseudotype particles (HCVpp) harboring unmodified E1E2 glycoproteins onto retroviral core particles have successfully been generated. They mimic the function of native HCV particles, thus representing a model to study the early steps of its lifecycle. The noncovalent E1E2 heterodimers present at the surface of the HCVpp, which contain complex-type glycans indicating modification by Golgi enzymes, are likely to mediate virus entry. The CD81 tetraspanin and the scavenger receptor SR-BI, two cellular molecules shown to interact with E2, are essential for HCVpp entry. However, these two proteins are not sufficient to provide entry functions in non permissive cells, suggesting that additional unidentified cellular factor(s) are necessary for HCVpp entry. Potential structural homology with other fusion proteins from closely related viruses suggest that HCV envelope glycoproteins belong to class II fusion proteins, but contrary to what is observed for other viral envelope proteins of this class, they are highly glycosylated and are not matured by a cellular endoprotease cleavage.  相似文献   

10.
Drummer HE  Maerz A  Poumbourios P 《FEBS letters》2003,546(2-3):385-390
Hepatitis C virus (HCV) glycoproteins E1 and E2 are believed to be retained in the endoplasmic reticulum (ER) or cis-Golgi compartment via retention signals located in their transmembrane domains. Here we describe the detection of E1 and E2 at the surface of transiently transfected HEK 293T and Huh7 cells. Surface-localized E1E2 heterodimers presented exclusively as non-covalently associated complexes. Surface-expressed E2 contained trans-Golgi modified complex/hybrid type carbohydrate and migrated diffusely between 70 and 90 kDa while intracellular E1 and E2 existed as high mannose 35 kDa and 70 kDa precursors, respectively. In addition, surface-localized E1E2 heterodimers were incorporated into E1E2-pseudotyped HIV-1 particles that were competent for entry into Huh7 cells. These studies suggest that functional HCV glycoproteins are not retained exclusively in the ER and transit through the secretory pathway.  相似文献   

11.
Several cell surface molecules have been proposed as receptor candidates, mediating cell entry of hepatitis C virus (HCV) on the basis of their physical association with virions or with soluble HCV E2 glycoproteins. However, due to the lack of infectious HCV particles, evidence that these receptor candidates support infection was missing. Using our recently described infectious HCV pseudotype particles (HCVpp) that display functional E1E2 glycoprotein complexes, here we show that HCV is a pH-dependent virus, implying that its receptor component(s) mediate virion internalization by endocytosis. Expression of the CD81 tetraspanin in non-permissive CD81-negative hepato-carcinoma cells was sufficient to restore susceptibility to HCVpp infection, confirming its critical role as a cell attachment factor. As a cell surface molecule likely to mediate endosomal trafficking, we demonstrate that the human scavenger receptor class B type 1 (SR-B1), a high-density lipoprotein-internalization molecule that we previously proposed as a novel HCV receptor candidate due to its affinity with E2 glycoproteins, is required for infection of CD81-expressing hepatic cells. By receptor competition assays, we found that SR-B1 antibodies that blocked binding of soluble E2 could prevent HCVpp infectivity. Furthermore, we establish that the hyper-variable region 1 of the HCV E2 glycoprotein is a critical determinant mediating entry in SR-B1-positive cells. Finally, by correlating expression of HCV receptors and infectivity, we suggest that, besides CD81 and SR-B1, additional hepatocyte-specific co-factor(s) are necessary for HCV entry.  相似文献   

12.
Hepatitis C virus (HCV) causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma in addition to acute hepatitis. The HCV genome encodes two envelope glycoproteins, E1 and E2. To investigate the role of E1 and E2 in HCV infection, we used a recombinant vesicular stomatitis virus (VSV), VSVdeltaG*, harboring the green fluorescent protein gene instead of the VSV G envelope protein gene. It was complemented with the native form of E1 and E2, or E1 or E2 alone, to make HCV pseudotypes VSVdeltaG*(HCV), VSVdeltaG*(E1), and VSVdeltaG*(E2). Neither E1 nor E2 expression was detected on the cell surface, as reported. Unlike previous reports, infectious activities of VSVdeltaG*(HCV), VSVdeltaG*(E1) and VSVdeltaG*(E2) pseudotypes were detected under conditions where VSV was completely neutralized by anti-VSV. We could enhance the infectious titers 100-fold by sonication upon virus harvest. Bovine lactoferrin efficiently inhibited infection by VSVdeltaG*(HCV) as well as VSVdeltaG*(E2), as the interaction between E2 and lactoferrin has been thought to contribute to the inhibition of HCV infectivity. VSVdeltaG*(HCV) infected many adherent cell lines, including hepatic cell lines, but not most hematopoietic cell lines. Treatment of cells with trypsin, tunicamycin, or sulfated polysaccharides before infection reduced the infectivity of VSVdeltaG*(HCV) by about 90%, suggesting that a cell surface protein(s) with sugar chains plays an important role in HCV infection. The VSV pseudotypes developed here would be useful for analyzing the early stages of HCV infection.  相似文献   

13.
Retroviral Gag and Env glycoproteins (GPs) are expressed from distinct cellular areas and need to encounter to interact and assemble infectious particles. Retroviral particles may also incorporate GPs derived from other enveloped viruses via active or passive mechanisms, a process known as "pseudotyping." To further understand the mechanisms of pseudotyping, we have investigated the capacity of murine leukemia virus (MLV) or lentivirus core particles to recruit GPs derived from different virus families: the G protein of vesicular stomatitis virus (VSV-G), the hemagglutinin from an influenza virus, the E1E2 glycoproteins of hepatitis C virus (HCV-E1E2), and the retroviral Env glycoproteins of MLV and RD114 cat endogenous virus. The parameters that influenced the incorporation of viral GPs onto retroviral core particles were (i) the intrinsic cell localization properties of both viral GP and retroviral core proteins, (ii) the ability of the viral GP to interact with the retroviral core, and (iii) the expression of the lentiviral Nef protein. Whereas the hemagglutinin and VSV-G glycoproteins were recruited by MLV and lentivirus core proteins at the cell surface, the HCV and MLV GPs were most likely recruited in late endosomes. In addition, whereas these glycoproteins could be passively incorporated on either retrovirus type, the MLV GP was also actively recruited by MLV core proteins, which, through interactions with the cytoplasmic tail of the latter GP, induced its localization to late endosomal vesicles. Finally, the expression of Nef proteins specifically enhanced the incorporation of the retroviral GPs by increasing their localization in late endosomes.  相似文献   

14.
The mechanism of entry of hepatitis C virus (HCV) through interactions between the envelope glycoproteins and specific cell surface receptors remains unclear at this time. We have previously shown with the vesicular stomatitis virus (VSV)/HCV pseudotype model that the hypervariable region 1 of the HCV E2 envelope glycoprotein helps in binding with glycosaminoglycans present on the cell surface. In this study, we have examined the binding of HCV envelope glycoproteins with chemically modified derivatives of heparin. Furthermore, we have determined the functional relevance of the interaction of heparin derivatives with HCV envelope glycoproteins for infectivity by using a human immunodeficiency virus (HIV)/HCV pseudotype, a VSV/HCV pseudotype, and cell culture-grown HCV genotype 1a. Taken together, our results suggest that the HCV envelope glycoproteins rely upon O-sulfated esters of a heparin homologue to facilitate entry into mammalian cells.  相似文献   

15.
In intact Madin-Darby canine kidney (MDCK) cell monolayers, vesicular stomatitis virus (VSV) matures only at basolateral membranes beneath tight junctions, whereas influenza virus buds from apical cell surfaces. Early in the growth cycle, the viral glycoproteins are restricted to the membrane domain from which each virus buds. We report here that phenotypic mixing and formation of VSV pseudotypes occurred when influenza virus-infected MDCK cells were superinfected with VSV. Up to 75% of the infectious VSV particles from such experiments were neutralized by antiserum specific for influenza virus, and a smaller proportion (up to 3%) were resistant to neutralization with antiserum specific for VSV. The latter particles, which were neutralized by antiserum to influenza A/WSN virus, are designated as VSV(WSN) pseudotypes. During mixed infections, both wild-type viruses were detected 1 to 2 h before either phenotypically mixed VSV or VSV(WSN) pseudotypes. Coincident with the appearance of cytopathic effects in the monolayer, the yield of pseudotypes rose dramatically. In contrast, in doubly infected BHK-21 cells, which do not show polarity in virus maturation sites and are not connected by tight junctions, VSV(WSN) pseudotypes were detected as soon as VSV titers rose to the minimum levels which allowed detection of pseudotypes, and the proportion observed remained relatively constant at later times. Examination of thin sections of doubly infected MDCK monolayers revealed that polarity in maturation sites was preserved for both viruses until approximately 12 h after inoculation with influenza virus, when disruption of junctional complexes was evident. Even at later periods, the majority of each virus type was associated with its normal membrane domain, suggesting that the sorting mechanisms responsible for directing the glycoproteins of VSV and influenza virus to separate surface domains continue to operate in doubly infected MDCK cells. The time course of VSV(WSN) pseudotype formation and changes in virus maturation sites are compatible with progressive mixing of viral glycoproteins at either intracellular or plasma membranes of doubly infected cells.  相似文献   

16.
In patients chronically infected with hepatitis C virus and in the HCV cell culture system (HCVcc), it is known that highly infectious virus particles have low to very low buoyant densities. These low densities have been attributed to the association of HCV with lipoprotein components, which occur during the viral morphogenesis. The resulting hybrid particles are known as lipoviral particles (LVP); however, very little is known about how these particles are created. In our study, we used Huh7.5 cells to investigate the intracellular association between envelope proteins and apolipoproteins B and E (ApoB and ApoE, respectively). In particular, we were interested in the role of this association in initiating LVP morphogenesis. Co-immunoprecipitation assays revealed that ApoB, ApoE, and HCV glycoproteins formed a protein complex early in the HCV lifecycle. Confocal analyses of naïve, E1E2-transduced and HCVcc-infected cells showed that HCV glycoproteins, ApoB and ApoE were found strongly colocalized only in the endoplasmic reticulum. We also found that HCV glycoproteins, ApoB and ApoE were already associated with intracellular infectious viral particles and, furthermore, that the protein complex was conserved in the infectious viral particles present in the supernatant of infected Huh7.5 cells. The association of HCV glycoproteins with ApoE was also evidenced in the HCVpp system, using the non-hepatic HEK293T cell line. We suggest that the complex formed by HCV E1E2, ApoB, and ApoE may initiate lipoviral particle morphogenesis.  相似文献   

17.
Basu A  Beyene A  Meyer K  Ray R 《Journal of virology》2004,78(9):4478-4486
The hypervariable region 1 (HVR1) of hepatitis C virus (HCV) E2 envelope glycoprotein is a 27-amino-acid sequence located at its N terminus. In this study, we investigated the functional role of HVR1 for interaction with the mammalian cell surface. The C-terminal truncated E2 glycoprotein was appended to a transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein for generation of the chimeric E2-G gene construct. A deletion of the HVR1 sequence from E2 was created for the construction of E2DeltaHVR1-G. Pseudotype virus, generated separately by infection of a stable cell line expressing E2-G or E2DeltaHVR1-G with a temperature-sensitive mutant of VSV (VSVts045), displayed unique functional properties compared to VSVts045 as a negative control. Virus generated from E2DeltaHVR1-G had a reduced plaquing efficiency ( approximately 50%) in HepG2 cells compared to that for the E2-G virus. Cells prior treated with pronase (0.5 U/ml) displayed a complete inhibition of infectivity of the E2DeltaHVR1-G or E2-G pseudotypes, whereas heparinase I treatment (8 U/ml) of cells reduced 40% E2-G pseudotype virus titer only. E2DeltaHVR1-G pseudotypes were not sensitive to heparin (6 to 50 micro g/ml) as an inhibitor of plaque formation compared to the E2-G pseudotype virus. Although the HVR1 sequence itself does not match with the known heparin-binding domain, a synthetic peptide representing 27 amino acids of the E2 HVR1 displayed a strong affinity for heparin in an enzyme-linked immunosorbent assay. This binding was competitively inhibited by a peptide from the V3 loop of a human immunodeficiency virus glycoprotein subunit (gp120) known to bind with cell surface heparin. Taken together, our results suggest that the HVR1 of E2 glycoprotein binds to the cell surface proteoglycans and may facilitate virus-host interaction for replication cycle of HCV.  相似文献   

18.
The HCV envelope glycoproteins E1 and E2 contain eight and 18 highly conserved cysteine residues, respectively. Here, we examined the oxidation state of E1E2 heterodimers incorporated into retroviral pseudotyped particles (HCVpp) and investigated the significance of free sulfhydryl groups in cell culture-derived HCV (HCVcc) and HCVpp entry. Alkylation of free sulfhydryl groups on HCVcc/pp with a membrane-impermeable sulfhydryl-alkylating reagent 4-(N-maleimido)benzyl-α-trimethylammonium iodide (M135) prior to virus attachment to cells abolished infectivity in a dose-dependent manner. Labeling of HCVpp envelope proteins with EZ-Link maleimide-PEG2-biotin (maleimide-biotin) detected free thiol groups in both E1 and E2. Unlike retroviruses that employ disulfide reduction to facilitate virus entry, the infectivity of alkylated HCVcc could not be rescued by addition of exogenous reducing agents. Furthermore, the infectivity of HCVcc bound to target cells was not affected by addition of M135 indicative of a change in glycoprotein oxidation state from reduced to oxidized following virus attachment to cells. By contrast, HCVpp entry was reduced by 61% when treated with M135 immediately following attachment to cells, suggesting that the two model systems might demonstrate variations in oxidation kinetics. Glycoprotein oxidation was not altered following binding of HCVpp incorporated E1E2 to soluble heparin or recombinant CD81. These results suggest that HCV entry is dependent on the presence of free thiol groups in E1 and E2 prior to cellular attachment and reveals a new essential component of the HCV entry process.  相似文献   

19.
表达H5N1亚型禽流感病毒HA蛋白的重组鼠白血病病毒的特性   总被引:5,自引:0,他引:5  
通过反转录 聚合酶链式反应 (RT PCR)扩增了H5N1亚型鹅源禽流感病毒 (AIV)完整的血凝素 (HA)基因并进行了克隆与鉴定。序列测定结果已经登陆GenBank ,登陆号为AY6 394 0 5。序列分析表明所扩增的HA基因开放性阅读框架 (ORF)由170 7个核苷酸组成 ,共编码 5 6 8个氨基酸 ,裂解位点的氨基酸组成为RKKR↓GLF ,含连续的碱性氨基酸 ,具有高致病性AIVHA基因裂解位点的特征。构建了含HA基因的真核表达载体pcDNA HA ,通过与鼠白血病病毒 (MuLV)假病毒构建体系的两种质粒pHIT6 0和pHIT111共转染人胚肾细胞 2 93T ,4 8h后收集假病毒上清 ,超离后通过Western blot证明HA蛋白能够在假病毒颗粒表面表达 ,表明HA能够整合到此病毒粒子表面。通过感染 2 93T、COS 7和NIH3T3三种不同的靶细胞 ,证实所构建的假病毒粒子具有感染性和泛嗜性。本研究成功构建了具有感染性的MuLV HA假病毒体系 ,为研究鹅源禽流感病毒侵入细胞的机理及其组织嗜性的变异提供一种新方法。  相似文献   

20.
N Emi  T Friedmann    J K Yee 《Journal of virology》1991,65(3):1202-1207
Mixed infection of a cell by vesicular stomatitis virus (VSV) and retroviruses results in the production of progeny virions bearing the genome of one virus encapsidated by the envelope proteins of the other. The mechanism for the phenomenon of pseudotype formation is not clear, although specific recognition of a viral envelope protein by the nucleocapsid of an unrelated virus is presumably involved. In this study, we used Moloney murine leukemia virus (MoMLV)-based retroviral vectors encoding the gene for neomycin phosphotransferase to investigate the interaction between the VSV G protein and the retroviral nucleocapsid during the formation of MoMLV(VSV) pseudotypes. Our results show that VSV G protein can be incorporated into the virions of retrovirus in the absence of other VSV-encoded proteins or of retroviral envelope protein. Infection of hamster cells by MoMLV(VSV) pseudotypes gave rise to neomycin phosphotransferase-resistant colonies, and addition of anti-VSV serum to the virus preparations completely abolished the infectivity of MoMLV(VSV) pseudotypes. It should be possible to use existing mutants of VSV G protein in the system described here to identify the signals that are important for the formation of MoMLV(VSV) pseudotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号