首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The molecular mechanisms of DNA recognition and modification by EcoRII DNA methyltransferase (M.EcoRII) were studied using 14-mer substrate analogs containing 2-aminopurine or 1′,2′-dideoxy-D-ribofuranose in the M.EcoRII recognition site. The efficiency of DNA binding and methylation depended on the position of a modified nucleoside residue in the recognition site. A structural model of M.EcoRII in complex with substrate DNA and the cofactor analog S-adenosyl-L-homocysteine (AdoHcy) was constructed using the available crystal structures of M.Hha and M.HaeIII and the recent Frankenstein’s monster approach. The amino acid residues interacting with DNA were predicted based on the model. In addition, theoretical and experimental findings made it possible to predict the groups of atoms of the heterocyclic bases of the M.EcoRII recognition site that are presumably involved in the interactions with the enzyme.  相似文献   

2.
DNA methylation is an important cellular mechanism for controlling gene expression. Whereas the mutagenic properties of many DNA adducts, e.g., those arising from polycyclic aromatic hydrocarbons, have been widely studied, little is known about their influence on DNA methylation. We have constructed site-specifically modified 18-mer oligodeoxynucleotide duplexes containing a pair of stereoisomeric adducts derived from a benzo[a]pyrene-derived diol epoxide [(+)- and (-)-r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, or B[a]PDE] bound to the exocyclic amino group of guanine. The adducts, either (+)- or (-)-trans-anti-B[a]P-N(2)-dG (G*), positioned either at the 5'-side or the 3'-side deoxyguanosine residue in the recognition sequence of EcoRII restriction-modification enzymes (5'-...CCA/TGG...) were incorporated into 18-mer oligodeoxynucleotide duplexes. The effects of these lesions on complex formation and the catalytic activity of the EcoRII DNA methyltransferase (M.EcoRII) and EcoRII restriction endonuclease (R.EcoRII) were investigated. The M.EcoRII catalyzes the transfer of a methyl group to the C5 position of the 3'-side cytosine of each strand of the recognition sequence, whereas R.EcoRII catalyzes cleavage of both strands. The binding of R.EcoRII to the oligodeoxynucleotide duplexes and the catalytic cleavage were completely abolished when G was positioned at the 3'-side dG position (5'-...CCTGG*...). When G* was at the 5'-side dG position, binding was moderately diminished, but cleavage was completely blocked. In the case of M.EcoRII, binding is diminished by factors of 5-30 but the catalytic activity was either abolished or reduced 4-80-fold when the adducts were located at either position. Somewhat smaller effects were observed with hemimethylated oligodeoxynucleotide duplexes. These findings suggest that epigenetic effects, in addition to genotoxic effects, need to be considered in chemical carcinogenesis initiated by B[a]PDE, since the inhibition of methylation may allow the expression of genes that promote tumor development.  相似文献   

3.
4.
The specific activity of the human immunodeficiency virus, type 1 (HIV-1), integrase on the viral long terminal repeat requires the binding of the enzyme to certain sequences located in the U3 and U5 regions at the ends of viral DNA, but the determinants of this specific DNA-protein recognition are not yet completely understood. We synthesized DNA duplexes mimicking the U5 region and containing either 2'-modified nucleosides or 1,3-propanediol insertions and studied their interactions with HIV-1 integrase, using Mn2+ or Mg2+ ions as integrase cofactors. These DNA modifications had no strong effect on integrase binding to the substrate analogs but significantly affected 3'-end processing rate. The effects of nucleoside modifications at positions 5, 6, and especially 3 strongly depended on the cationic cofactor used. These effects were much more pronounced in the presence of Mg2+ than in the presence of Mn2+. Modifications of base pairs 7-9 affected 3'-end processing equally in the presence of both ions. Adenine from the 3rd bp is thought to form at least two hydrogen bonds with integrase that are crucial for specific DNA recognition. The complementary base, thymine, is not important for integrase activity. For other positions, our results suggest that integrase recognizes a fine structure of the sugar-phosphate backbone rather than heterocyclic bases. Integrase interactions with the unprocessed strand at positions 5-8 are more important than interactions with the processed strand for specific substrate recognition. Based on our results, we suggest a model for integrase interaction with the U5 substrate.  相似文献   

5.
We have partially purified a DNA methyltransferase from human placenta using a novel substrate for a highly sensitive assay of methylation of hemimethylated DNA. This substrate was prepared by extensive nick translation of bacteriophage XP12 DNA, which normally has virtually all of its cytosine residues replaced by 5-methylcytosine (m5C). Micrococcus luteus DNA was just as good a substrate if it was first similarly nick translated with m5dCTP instead of dCTP in the polymerization mixture. At different stages in purification and under various conditions (including in the presence or absence of high mobility group proteins), the methylation of m5C-deficient DNA and that of hemimethylated DNA were compared. Although hemimethylated , m5C-rich DNAs were much better substrates than were m5C-deficient DNAs and normal XP12 DNA could not be methylated, all of these DNAs were bound equally well by the enzyme. In contrast, from the same placental extract, a DNA-binding protein of unknown function was isolated which binds to m5C-rich DNA in preference to the analogous m5C-poor DNA.  相似文献   

6.
Ultraviolet irradiation of EcoRII methyltransferase in the presence of its substrate, S-adenosyl-L-methionine (AdoMet), results in the formation of a stable enzyme-substrate adduct. This adduct can be demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after irradiation of the enzyme in the presence of either [methyl-3H]AdoMet or [35S]AdoMet. The extent of photolabeling is low. Under optimal conditions, 4.5 pmol of [3H]AdoMet is incorporated into 100 pmol of enzyme. Use of the 8-azido derivative of AdoMet as the photolabeling substrate increases the incorporation by approximately 2-fold. However, this adduct, unlike the one formed with AdoMet, is not stable when treated with thiol reagents or precipitated with trichloroacetic acid. A catalytically active conformation of the enzyme is needed for AdoMet photolabeling. Heat-inactivated enzyme or proteins for which AdoMet is not a substrate or cofactor do not undergo adduct formation. Two other methyltransferases, MspI and dam methylases are also shown to form adducts with AdoMet upon UV irradiation. The binding constant of the EcoRII methyltransferase for AdoMet determined with the photolabeling reaction is 11 microM, which is similar to the binding constant of 9 microM previously reported (Friedman, S. (1986) Nucleic Acids Res. 14, 4543-4556). The AdoMet analogs S-adenosyl-L-homocysteine (Ki = 0.83 microM) and sinefungin (Ki = 4.3 microM) are effective inhibitors of photolabeling, whereas S-adenosyl-D-homocysteine (Ki = 46 microM) is a poor inhibitor. These experiments indicate that AdoMet becomes covalently bound at the AdoMet-binding site on the enzyme molecule. The EcoRII methyltransferase-AdoMet adduct is very stable and could be used to identify the AdoMet-binding site on DNA methyltransferases.  相似文献   

7.
Proudfoot EM  Mackay JP  Karuso P 《Biochemistry》2001,40(15):4867-4878
The molecular recognition of oligonucleotides by chiral ruthenium complexes has been probed by NMR spectroscopy using the template Delta-cis-alpha- and Delta-cis-beta-[Ru(RR-picchxnMe(2)) (bidentate)](2+), where the bidentate ligand is one of phen (1,10-phenanthroline), dpq (dipyrido[3,2-f:2',3'-h]quinoxaline), or phi (9,10-phenanthrenequinone diimine) and picchxnMe(2)() is N,N'-dimethyl-N,N'-di(2-picolyl)-1,2-diaminocyclohexane. By varying only the bidentate ligand in a series of complexes, it was shown that the bidentate alone can alter binding modes. DNA binding studies of the Delta-cis-alpha-[Ru(RR-picchxnMe(2))(phen)](2+) complex indicate fast exchange kinetics on the chemical shift time scale and a "partial intercalation" mode of binding. This complex binds to [d(CGCGATCGCG)](2) and [d(ATATCGATAT)](2) at AT, TA, and GA sites from the minor groove, as well as to the ends of the oligonucleotide at low temperature. Studies of the Delta-cis-beta-[Ru(RR-picchxnMe(2))(phen)](2+) complex with [d(CGCGATCGCG)](2) showed that the complex binds only weakly to the ends of the oligonucleotide. The interaction of Delta-cis-alpha-[Ru(RR-picchxnMe(2))(dpq)](2+) with [d(CGCGATCGCG)](2) showed intermediate exchange kinetics and evidence of minor groove intercalation at the GA base step. In contrast to the phen and dpq complexes, Delta-cis-alpha- and Delta-cis-beta-[Ru(RR-picchxnMe(2))(phi)](2+) showed evidence of major groove binding independent of the metal ion configuration. DNA stabilization induced by complex binding to [d(CGCGATCGCG)](2) (measured as DeltaT(m)) increases in the order phen < dpq and DNA affinity in the order phen < dpq < phi. The groove binding preferences exhibited by the different bidentate ligands is explained with the aid of molecular modeling experiments.  相似文献   

8.
9.
The properties of the interaction of 5-fluorocytosine-containing DNA with the EcoRII methyltransferase were studied. The DNA used was either a polymer synthesized in vitro, or a 20-mer containing one CCA/TGG sequence. The DNA could be methylated by the enzyme. In the process the enzyme formed a tight binding adduct with the DNA that could be identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Enzyme activity was inhibited by this interaction. The 20-mer could be used to titrate the active site of the enzyme. The DNA polymer formed a tight binding complex that could be identified following digestion of the DNA with pancreatic deoxyribonuclease or micrococcal nuclease. A peptide-DNA adduct could be isolated after digestion of the EcoRII-DNA adduct with staphylococcal protease V8 by high pressure liquid chromatography and polyacrylamide gel electrophoresis. Sequencing of the peptide indicated the DNA bound to a region of the protein that is conserved in all procaryotic DNA(cytosine-5)-methyltransferases. We have previously shown that this region contains a cysteine that can be photomethylated with adenosylmethionine. This region, in addition to forming part of, or being adjacent to, the AdoMet binding site, also forms part of the DNA binding site.  相似文献   

10.
DNA methyltransferase 1 (DNMT1) is an emerging target for the treatment of cancer, brain disorders, and other diseases. Currently, there are only a few DNMT1 inhibitors with potential application as therapeutic agents or research tools. 5,5-Methylenedisalicylic acid is a novel scaffold previously identified by virtual screening with detectable although weak inhibitory activity of DNMT1 in biochemical assays. Herein, we report enzyme inhibition of a structurally related compound, trimethylaurintricarboxylic acid (NSC97317) that showed a low micromolar inhibition of DNMT1 (IC50 = 4.79 μM). Docking studies of the new inhibitor with the catalytic domain of DNMT1 suggest that NSC97317 can bind into the catalytic site. Interactions with amino acid residues that participate in the mechanism of DNA methylation contribute to the binding recognition. In addition, NSC97317 had a good match with a structure-based pharmacophore model recently developed for inhibitors of DNMT1. Trimethylaurintricarboxylic acid can be a valuable biochemical tool to study DNMT1 inhibition in cancer and other diseases related to DNA methylation.  相似文献   

11.
Affinity modification of EcoRII DNA methyltransferase (M x EcoRII) by DNA duplexes containing oxidized 2'-O-beta-D-ribofuranosylcytidine (Crib*) or 1-(beta-D-galactopyranosyl)thymine (Tgal*) residues was performed. Cross-linking yields do not change irrespective of whether active Crib* replaces an outer or an inner (target) deoxycytidine within the EcoRII recognition site. Chemical hydrolysis of M x EcoRII in the covalent cross-linked complex with the Tgal*-substituted DNA indicates the region Gly268-Met391 of the methylase that is likely to interact with the DNA sugar-phosphate backbone. Both specific and non-specific DNA interact with the same M x EcoRII region. Our results support the theoretically predicted DNA binding region of M x EcoRII.  相似文献   

12.
The EcoKI methyltransferase methylates two adenines on opposite strands of its bipartite DNA recognition sequence AAC(N6)GTGC. The enzyme has a strong preference for hemimethylated DNA substrates, but the methylation state of the DNA does not influence its binding affinity. Methylation interference was used to compare the contacts made by the EcoKI methyltransferase with unmodified, hemimethylated or fully modified DNAs. Contacts were seen at or near the N7 position of guanine, in the major groove, for all of the guanines in the EcoKI recognition sequence, and at two guanines on the edge of the intervening spacer sequence. The presence of the cofactor and methyl donor S-adenosyl methionine had a striking effect on the interference pattern for unmodified DNA which could not be mimicked by the presence of the cofactor analogue S-adenosyl homocysteine. In contrast, S-adenosyl methionine had no effect on the interference patterns for either kind of hemimethylated DNA, or for fully modified DNA. Differences between the interference patterns for the unmodified DNA and any of the three forms of methylated DNA provide evidence that methylation of the target sequence influences the conformation of the protein-DNA interface, and illustrate the importance of S-adenosyl methionine in the distinction between unmodified and methylated DNA by the methyltransferase.  相似文献   

13.
14.
Ghrelin-O-Acyltransferase (GOAT) is an 11-transmembrane integral membrane protein that octanoylates the metabolism-regulating peptide hormone ghrelin at Ser3 and may represent an attractive target for the treatment of type II diabetes and the metabolic syndrome. Protein octanoylation is unique to ghrelin in humans, and little is known about the mechanism of GOAT or of related protein-O-acyltransferases HHAT or PORC. In this study, we explored an in vitro microsomal ghrelin octanoylation assay to analyze its enzymologic features. Measurement of Km for 10-mer, 27-mer, and synthetic Tat-peptide-containing ghrelin substrates provided evidence for a role of charge interactions in substrate binding. Ghrelin substrates with amino-alanine in place of Ser3 demonstrated that GOAT can catalyze the formation of an octanoyl-amide bond at a similar rate compared with the natural reaction. A pH-rate comparison of these substrates revealed minimal differences in acyltransferase activity across pH 6.0–9.0, providing evidence that these reactions may be relatively insensitive to the basicity of the substrate nucleophile. The conserved His338 residue was required both for Ser3 and amino-Ala3 ghrelin substrates, suggesting that His338 may have a key catalytic role beyond that of a general base.  相似文献   

15.
16.
The structure of the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase in complex with cognate DNA was determined at 1.89 A resolution in the presence of S-adenosyl-L-homocysteine. DNA recognition and the dynamics of base-flipping were studied by site-directed mutagenesis, DNA methylation kinetics and fluorescence stopped-flow experiments. Our data illustrate the mechanism of coupling of DNA recognition and base-flipping. Contacts to the non-target strand in the second (3') half of the GATC site are established by R124 to the fourth base-pair, and by L122 and P134 to the third base-pair. The aromatic ring of Y119 intercalates into the DNA between the second and third base-pairs, which is essential for base-flipping to occur. Compared to previous published structures of bacteriophage T4 Dam, three major new observations are made in E.coli Dam. (1) The first Gua is recognized by K9, removal of which abrogates the first base-pair recognition. (2) The flipped target Ade binds to the surface of EcoDam in the absence of S-adenosyl-L-methionine, which illustrates a possible intermediate in the base-flipping pathway. (3) The orphaned Thy residue displays structural flexibility by adopting an extrahelical or intrahelical position where it is in contact to N120.  相似文献   

17.
RNA triphosphatases (RTPases) are involved in the addition of the distinctive cap structure found at the 5′ ends of eukaryotic mRNAs. Fungi, protozoa and some DNA viruses possess an RTPase that belongs to the triphosphate tunnel metalloenzyme family of enzymes that can also hydrolyze nucleoside triphosphates. Previous crystallization studies revealed that the phosphohydrolase catalytic core is located in a hydrophilic tunnel composed of antiparallel β-strands. However, all past efforts to obtain structural information on the interaction between RTPases and their substrates were unsuccessful. In the present study, we used computational molecular docking to model the binding of a nucleotide substrate into the yeast RTPase active site. In order to confirm the docking model and to gain additional insights into the molecular determinants involved in substrate recognition, we also evaluated both the phosphohydrolysis and the inhibitory potential of an important number of nucleotide analogs. Our study highlights the importance of specific amino acids for the binding of the sugar, base and triphosphate moieties of the nucleotide substrate, and reveals both the structural flexibility and complexity of the active site. These data illustrate the functional features required for the interaction of an RTPase with a ligand and pave the way to the use of nucleotide analogs as potential inhibitors of RTPases of pathogenic importance.  相似文献   

18.
M.HgiDII is a methyltransferase (MTase) from Herpetosiphon giganteus that recognizes the sequence GTCGAC. This enzyme belongs to a group of MTases that share a high degree of amino acid similarity, albeit none of them has been thoroughly characterized. To study the catalytic mechanism of M.HgiDII and its interactions with DNA, we performed molecular dynamics simulations with a homology model of M.HgiDII complexed with DNA and S-adenosyl-methionine. Our results indicate that M.HgiDII may not rely only on Glu119 to activate the cytosine ring, which is an early step in the catalysis of cytosine methylation; apparently, Arg160 and Arg162 may also participate in the activation by interacting with cytosine O2. Another residue from the catalytic site, Val118, also played a relevant role in the catalysis of M.HgiDII. Val118 interacted with the target cytosine and kept water molecules from accessing the region of the catalytic pocket where Cys79 interacts with cytosine, thus preventing water-mediated disruption of interactions in the catalytic site. Specific recognition of DNA was mediated mainly by amino acids of the target recognition domain, although some amino acids (loop 80–88) of the catalytic domain may also contribute to DNA recognition. These interactions involved direct contacts between M.HgiDII and DNA, as well as indirect contacts through water bridges. Additionally, analysis of sequence alignments with closely related MTases helped us to identify a motif in the TRD of M.HgiDII that may be relevant to specific DNA recognition.  相似文献   

19.
S Kochanek  D Renz    W Doerfler 《Nucleic acids research》1993,21(10):2339-2342
A sensitive method was devised to monitor the in vitro binding of nuclear proteins from HeLa cells presumably to the major groove of DNA. Upon the incubation of DNA with nuclear extracts, the complexed DNA was incubated with the CpG DNA methyltransferase from Spiroplasma species. Subsequently, the DNA was repurified, and the location of the methylated cytidine residues was determined by the hydrazine reaction of the DNA sequencing method. By using as DNA substrate the VAI (virus associated) region of human adenovirus type 2 (Ad2) DNA or specific Alu sequences associated with a number of human genes, it was documented that those segments of DNA that were protected by bound proteins against the reaction with DNasel also escaped in vitro methylation by the CpG DNA methyltransferase. This new footprinting method provides a sensitive indicator for in vitro DNA--protein interactions which are specific for the major groove of DNA.  相似文献   

20.
Trichosanthin (TCS) is a ribosome-inactivating protein (RIP) that possesses N-glycosidase activity. It inactivates ribosomes and arrests protein synthesis by removing a specific adenine from 28S rRNA. A molecular dynamics simulated annealing method was applied to study the binding modes of TCS with substrate analogs, three oligonucleotides GAG, GAGA, and CGAGAG, based on the crystal structures of the stable complexes of TCS with NADPH and with the reaction product adenine. A water molecule proposed to be responsible for hydrolyzing the N-glycosidic bond was included in the model. All the oligoribonucleotides can dock into the active cleft of TCS without unfavorable contacts. The interaction energies between TCS and the three oligonucleotides were calculated. The interactions of TCS with NADH were also studied by a molecular dynamics simulated annealing method. The interaction energy between NADH and TCS was compared with that between NADPH and TCS, showing that the lack of 2-phosphate group leads to an energy rise of 20 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号