首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A single bout of eccentric exercise results in muscle damage, but it is not known whether this is correlated with microcirculatory dysfunction. We tested the following hypotheses in the spinotrapezius muscle of rats either 1 (DH-1; n = 6) or 3 (DH-3; n = 6) days after a downhill run to exhaustion (90-120 min; -14 degrees grade): 1) in resting muscle, capillary hemodynamics would be impaired, and 2) at the onset of subsequent acute concentric contractions, the decrease of microvascular O(2) pressure (Pmv(o(2))), which reflects the dynamic balance between O(2) delivery and O(2) utilization, would be accelerated compared with control (Con, n = 6) rats. In contrast to Con muscles, intravital microscopy observations revealed the presence of sarcomere disruptions in DH-1 and DH-3 and increased capillary diameter in DH-3 (Con: 5.2 +/- 0.1; DH-1: 5.1 +/- 0.1; DH-3: 5.6 +/- 0.1 mum; both P < 0.05 vs. DH-3). At rest, there was a significant reduction in the percentage of capillaries that sustained continuous red blood cell (RBC) flux in both DH running groups (Con: 90.0 +/- 2.1; DH-1: 66.4 +/- 5.2; DH-3: 72.9 +/- 4.1%, both P < 0.05 vs. Con). Capillary tube hematocrit was elevated in DH-1 but reduced in DH-3 (Con: 22 +/- 2; DH-1: 28 +/- 1; DH-3: 16 +/- 1%; all P < 0.05). Although capillary RBC flux did not differ between groups (P > 0.05), RBC velocity was lower in DH-1 compared with Con (Con: 324 +/- 43; DH-1: 212 +/- 30; DH-3: 266 +/- 45 mum/s; P < 0.05 DH-1 vs. Con). Baseline Pmv(O(2)) before contractions was not different between groups (P > 0.05), but the time constant of the exponential fall to contracting Pmv(O(2)) values was accelerated in the DH running groups (Con: 14.7 +/- 1.4; DH-1: 8.9 +/- 1.4; DH-3: 8.7 +/- 1.4 s, both P < 0.05 vs. Con). These findings are consistent with the presence of substantial microvascular dysfunction after downhill eccentric running, which slows the exercise hyperemic response at the onset of contractions and reduces the Pmv(O(2)) available to drive blood-muscle O(2) delivery.  相似文献   

2.
With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O(2) delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O(2) delivery to O(2) uptake, evidenced through improved microvascular Po(2) (Pm(O(2))), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ~6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify Pm(O(2)) in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline Pm(O(2)) (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting Pm(O(2)) and the time-delay before Pm(O(2)) fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the Pm(O(2)) in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle.  相似文献   

3.
In healthy animals under normotensive conditions (N), contracting skeletal muscle perfusion is regulated to maintain microvascular O2 pressures (PmvO2) at levels commensurate with O2 demands. Hypovolemic hypotension (H) impairs muscle contractile function; we tested whether this condition would alter the matching of O2 delivery (Qo2) to O2 utilization (Vo2), as determined by PmvO2 at the onset of muscle contractions. PmvO2 in the spinotrapezius muscles of seven female Sprague-Dawley rats (280+/-6 g) was measured every 2 s across the transition from rest to 1-Hz twitch contractions. Measurements were made under N (mean arterial pressure, 97+/-4 mmHg) and H (induced by arterial section; mean arterial pressure, 58+/-3 mmHg, P<0.05) conditions; PmvO2 profiles were modeled using a multicomponent exponential fitted with independent time delays. Hypotension reduced muscle blood flow at rest (24+/-8 vs. 6+/-1 ml-1.min-1.100 g-1 for N and H, respectively; P<0.05) and during contractions (74+/-20 vs. 22+/-4 ml-1.min-1.100 g-1 for N and H, respectively; P<0.05). H significantly decreased resting PmvO2 and steady-state contracting PmvO2(19.4+/-2.4 vs. 8.7+/-1.6 Torr for N and H, respectively, P<0.05). At the onset of contractions, H reduced the time delay (11.8+/-1.7 vs. 5.9+/-0.9 s for N and H, respectively, P<0.05) before the fall in PmvO2 and accelerated the rate of PmvO2 decrease (time constant, 12.6+/-1.4 vs. 7.3+/-0.9 s for N and H, respectively, P<0.05). Muscle Vo2 was reduced by 71% at rest and 64% with contractions in H vs. N, and O2 extraction during H averaged 78% at rest and 94% during contractions vs. 51 and 78% in N. These results demonstrate that H constrains the increase of skeletal muscle Qo2 relative to that of Vo2 at the onset of contractions, leading to a decreased PmvO2. According to Fick's law, this scenario will decrease blood-myocyte O2 flux, thereby slowing Vo2 kinetics and exacerbating the O2 deficit generated at exercise onset.  相似文献   

4.
The effects of aging on muscle microvascular structure and function may play a key role in performance deficits and impairment of O2 exchange within skeletal muscle of senescent individuals. To determine the effects of aging on capillary geometry, red blood cell (RBC) hemodynamics, and hematocrit in a muscle of mixed fiber type, spinotrapezius muscles from Fischer 344 x Brown Norway hybrid rats aged 6-8 mo [young (Y); body mass 421 +/- 10 g, n = 6] and 26-28 mo [old (O); 561 +/- 12 g, n = 6] were observed by high-resolution transmission light microscopy under resting conditions. The percentage of RBC-perfused capillaries (Y: 78 +/- 3%; O: 75 +/- 2%) and degree of tortuosity and branching (Y: 13 +/- 2%; O: 13 +/- 2%, additional capillary length) were not different in O vs. Y muscles. Lineal density of RBC-perfused capillaries in O was significantly reduced (Y: 30.7 +/- 1.8, O: 22.8 +/- 3.1 capillaries/mm; P < 0.05). However, RBC-perfused capillaries from O rats (n = 78) exhibited increased RBC velocity (VRBC) (Y: 219 +/- 12, O: 310 +/- 14 microm/s; P < 0.05) and RBC flux (FRBC) (Y: 27 +/- 2, O: 41 +/- 2 RBC/s; P < 0.05) vs. Y rats (n = 66). Thus O2 delivery per unit of muscle was not different between groups (Y: 894 +/- 111, O: 887 +/- 118 RBC. s-1. mm muscle-1). Capillary hematocrit was not different in Y vs. O rats (Y: 26 +/- 1%, O: 28 +/- 1%: P > 0.05). These data indicate that in resting spinotrapezius muscle, aging decreases the lineal density of RBC-perfused capillaries while increasing mean VRBC and FRBC within those capillaries. Whereas muscle conductive O2 delivery and capillary hematocrit were unchanged, elevated VRBC reduces capillary RBC transit time and may impair the diffusive transport of O2 from blood to myocyte particularly under exercise conditions.  相似文献   

5.
6.
7.
The relationship between flow motion and tissue oxygenation was investigated during hemorrhage/retransfusion with and without dopamine in 14 pigs. During 45% bleed, jejunal microvascular hemoglobin O(2) saturation (HBjO(2)) and mucosal tissue Po(2) (Po(2)muc) were recorded in seven control and seven dopamine-treated animals. Mean arterial pressure and systemic O(2) delivery decreased during hemorrhage and returned to baseline after retransfusion. Hemorrhage decreased Po(2)muc from 33 +/- 2.8 to 13 +/- 1.6 mmHg and HBjO(2) from 53 +/- 4.9% to 32 +/- 3.9%, respectively, in control animals. During reperfusion, Po(2)muc and HBjO(2) remained low. Dopamine increased Po(2)muc from 28 +/- 4.3 to 45 +/- 4.6 mmHg and HBjO(2) from 54 +/- 5.7% to 69 +/- 1.5% and attenuated the decrease in Po(2)muc and HBjO(2) during hemorrhage. After retransfusion, dopamine restored Po(2)muc and HBjO(2) to baseline. Control animals developed rhythmic HBjO(2) oscillations with increasing amplitude (frequency, 4.5 to 7.6 cycles/min) and showed an inverse relationship between Po(2)muc and HBjO(2) oscillation amplitude. Dopamine prevented regular flow motion. The association between decreased Po(2)muc and increased oscillations in HBjO(2) after normalization of systemic hemodynamics and O(2) transport in control animals suggests a cause-and-effect relationship between low tissue Po(2) and flow motion activity within the jejunal microcirculation.  相似文献   

8.
We tested the hypothesis that a deficit in oxygen extraction or an increase in oxygen demand after skeletal muscle contraction leads to delayed recovery of tissue oxygen tension (Po(2)) in the skeletal muscle of hypertensive rats compared with normotensive rats. Blood flow and Po(2) recovery at various sites in the spinotrapezius muscle of spontaneously hypertensive rats (SHRs) were evaluated after a 3-min period of muscle contraction and were compared with corresponding values in Wistar-Kyoto rats (WKYs). The recovery of tissue Po(2) [75 +/- 7 (SHRs) vs. 99 +/- 12% (WKYs) of resting values] and venular Po(2) [72 +/- 13 (SHRs) vs. 104 +/- 10% (WKYs) of resting values] were significantly depressed in the SHRs 30 s postcontraction. The delayed recovery persisted for 120 s postcontraction for both tissue [86 +/- 11 (SHRs) vs. 119 +/- 13% (WKYs) of resting values] and venular [74 +/- 2 (SHRs) vs. 100 +/- 9% (WKYs) of resting values] Po(2) levels. There was no significant difference in the recovery of arteriolar Po(2) between the two groups 30 s postcontraction [95 +/- 7 (SHRs) vs. 84 +/- 8% (WKYs) of resting values]. Values for resting diameter of arcade arterioles in the two groups were not different [52 +/- 3 (SHRs) vs. 51 +/- 3 microm (WKYs)], but the arteriolar diameter after the 3-min contraction period was greater in the SHRs (71 +/- 4 microm) than the WKYs (66 +/- 4). Likewise, red blood cell (RBC) velocity [5.8 +/- 0.3 (SHRs) vs. 4.7 +/- 0.2 mm/s (WKYs)] and blood flow [23.0 +/- 0.8 (SHRs) vs. 16.0 +/- 1.0 nl/s (WKYs)] measurements were significantly greater in the SHRs at 30 s postcontraction. The delayed recovery of tissue Po(2) in the SHRs compared with the WKYs can be explained by a decrease in oxygen diffusion from the rarefied microvascular network due to the increased RBC velocity and the shorter residence time in the microcirculation and the consequent disequilibrium for oxygen between plasma and RBCs. The delayed recovery of venular Po(2) in the SHRs is consistent with this explanation, as venular Po(2) is slowly restored to baseline by release of oxygen from the RBCs. This leaves the arterioles in the primary role as oxygen suppliers to restore Po(2) in the tissue after muscle contraction.  相似文献   

9.
Blood flow requirements of the respiratory muscles (RM) increase markedly during exercise in chronic heart failure (CHF). We reasoned that if the RM could subtract a fraction of the limited cardiac output (QT) from the peripheral muscles, RM unloading would improve locomotor muscle perfusion. Nine patients with CHF (left ventricle ejection fraction = 26 +/- 7%) undertook constant-work rate tests (70-80% peak) receiving proportional assisted ventilation (PAV) or sham ventilation. Relative changes (Delta%) in deoxy-hemoglobyn, oxi-Hb ([O2Hb]), tissue oxygenation index, and total Hb ([HbTOT], an index of local blood volume) in the vastus lateralis were measured by near infrared spectroscopy. In addition, QT was monitored by impedance cardiography and arterial O2 saturation by pulse oximetry (SpO2). There were significant improvements in exercise tolerance (Tlim) with PAV. Blood lactate, leg effort/Tlim and dyspnea/Tlim were lower with PAV compared with sham ventilation (P < 0.05). There were no significant effects of RM unloading on systemic O2 delivery as QT and SpO2 at submaximal exercise and at Tlim did not differ between PAV and sham ventilation (P > 0.05). Unloaded breathing, however, was related to enhanced leg muscle oxygenation and local blood volume compared with sham, i.e., higher Delta[O2Hb]% and Delta[HbTOT]%, respectively (P < 0.05). We conclude that RM unloading had beneficial effects on the oxygenation status and blood volume of the exercising muscles at similar systemic O2 delivery in patients with advanced CHF. These data suggest that blood flow was redistributed from respiratory to locomotor muscles during unloaded breathing.  相似文献   

10.
In order to establish a quantitative model of blood flow in skeletal muscle, the mechanical properties of the blood vessels need to be measured. We present measurements of the viscoelastic properties of arterioles, venules, and capillaries in exteriorized rat spinotrapezius muscle. Muscles were perfused with an inert silicone polymer and a uniform static pressure was established by occlusion of the venous outflow. Vessel diameters were then measured as a function of the static pressure. This study provides the first measurements of the viscoelastic properties of microvessels in skeletal muscle in situ. Over a pressure range of 20-200 mmHg, the transverse arterioles are the most distensible vessels, while the arcade venules are the stiffest. In response to a step change in pressure, all vessels show an initial elastic deformation, followed by a nonlinear creep. Based on the experimental results for different pressure histories a constitutive equation relating vessel diameter to the local transmural pressure is proposed. Diameter changes are expressed in the form of a diameter strain, analogous to a Green's strain, and are related to the local transmural pressure using a standard linear solid model. This model has only three empirical coefficients and could be fitted to all experimental results for all vessels within error of measurement.  相似文献   

11.
Responses to exchange transfusion using red blood cells (RBCs) with normal and reduced flexibility were studied in the hamster window chamber model during acute moderate isovolemic hemodilution to determine the role of RBC membrane stiffness in microvascular perfusion and tissue oxygenation. Erythrocyte stiffness was increased by 30-min incubation in 0.02% glutaraldehyde solution, and unreacted glutaraldehyde was completely removed. Filtration pressure through 5-microm pore size filters was used to quantify stiffness of the RBCs. Anemic conditions were induced by two isovolemic hemodilution steps using 6% 70-kDa dextran to a hematocrit (Hct) of 18% (moderate hemodilution). The protocol continued with an exchange transfusion to reduce native RBCs to 75% of baseline (11% Hct) with either fresh RBCs (RBC group) or reduced-flexibility RBCs (GRBC group) suspended in 5% albumin at 18% Hct; a plasma expander (6% 70-kDa dextran; Dex70 group) was used as control. Systemic parameters, microvascular perfusion, capillary perfusion [functional capillary density (FCD)], and oxygen levels across the microvascular network were measured by noninvasive methods. RBC deformability for GRBCs was significantly decreased compared with RBCs and moderate hemodilution conditions. The GRBC group had a greater mean arterial blood pressure (MAP) than the RBC and Dex70 groups. FCD was substantially higher for RBC (0.81 +/- 0.07 of baseline) vs. GRBC (0.32 +/- 0.10 of baseline) and Dex70 (0.38 +/- 0.10 of baseline) groups. Microvascular tissue Po(2) was significantly lower for Dex70 and GRBC vs. RBC groups and the moderate hemodilution condition. Results were attributed to decreased oxygen uploading in the lungs and obstruction of tissue capillaries by rigidified RBCs, indicating that the effects impairing RBC flexibility are magnified at the microvascular level, where perfusion and oxygenation may define transfusion outcome.  相似文献   

12.

Introduction

Women with fibromyalgia (FM) have symptoms of increased muscular fatigue and reduced exercise tolerance, which may be associated with alterations in muscle microcirculation and oxygen metabolism. This study used near-infrared diffuse optical spectroscopies to noninvasively evaluate muscle blood flow, blood oxygenation and oxygen metabolism during leg fatiguing exercise and during arm arterial cuff occlusion in post-menopausal women with and without FM.

Methods

Fourteen women with FM and twenty-three well-matched healthy controls participated in this study. For the fatiguing exercise protocol, the subject was instructed to perform 6 sets of 12 isometric contractions of knee extensor muscles with intensity steadily increasing from 20 to 70% maximal voluntary isometric contraction (MVIC). For the cuff occlusion protocol, forearm arterial blood flow was occluded via a tourniquet on the upper arm for 3 minutes. Leg or arm muscle hemodynamics, including relative blood flow (rBF), oxy- and deoxy-hemoglobin concentration ([HbO2] and [Hb]), total hemoglobin concentration (THC) and blood oxygen saturation (StO2), were continuously monitored throughout protocols using a custom-built hybrid diffuse optical instrument that combined a commercial near-infrared oximeter for tissue oxygenation measurements and a custom-designed diffuse correlation spectroscopy (DCS) flowmeter for tissue blood flow measurements. Relative oxygen extraction fraction (rOEF) and oxygen consumption rate (rVO2) were calculated from the measured blood flow and oxygenation data. Post-manipulation (fatiguing exercise or cuff occlusion) recovery in muscle hemodynamics was characterized by the recovery half-time, a time interval from the end of manipulation to the time that tissue hemodynamics reached a half-maximal value.

Results

Subjects with FM had similar hemodynamic and metabolic response/recovery patterns as healthy controls during exercise and during arterial occlusion. However, tissue rOEF during exercise in subjects with FM was significantly lower than in healthy controls, and the half-times of oxygenation recovery (Δ[HbO2] and Δ[Hb]) were significantly longer following fatiguing exercise and cuff occlusion.

Conclusions

Our results suggest an alteration of muscle oxygen utilization in the FM population. This study demonstrates the potential of using combined diffuse optical spectroscopies (i.e., NIRS/DCS) to comprehensively evaluate tissue oxygen and flow kinetics in skeletal muscle.  相似文献   

13.
Exercise training induces multiple adaptations within skeletal muscle that may improve local O(2) delivery-utilization matching (i.e., Po(2)mv). We tested the hypothesis that increased nitric oxide (NO) function is intrinsic to improved muscle Po(2)mv kinetics from rest to contractions after exercise training. Healthy young Sprague-Dawley rats were assigned to sedentary (n = 18) or progressive treadmill exercise training (n = 10; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min, -14% grade) groups. Po(2)mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP, NO donor; 300 μM), and N(G)-nitro-l-arginine methyl ester (l-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained rats had greater peak oxygen uptake (Vo(2peak)) than their sedentary counterparts (81 ± 1 vs. 72 ± 2 ml·kg(-1)·min(-1), respectively; P < 0.05). Exercise-trained rats had significantly slower Po(2)mv fall throughout contractions (τ(1); time constant for the first component) during control (sedentary: 8.1 ± 0.6; trained: 15.2 ± 2.8 s). Compared with control, SNP slowed τ(1) to a greater extent in sedentary rats (sedentary: 38.7 ± 5.6; trained: 26.8 ± 4.1 s; P > 0.05) whereas l-NAME abolished the differences in τ(1) between sedentary and trained rats (sedentary: 12.0 ± 1.7; trained: 11.2 ± 1.4 s; P < 0.05). Our results indicate that endurance exercise training leads to greater muscle microvascular oxygenation across the metabolic transient following the onset of contractions (i.e., slower Po(2)mv kinetics) partly via increased NO-mediated function, which likely constitutes an important mechanism for training-induced metabolic adaptations.  相似文献   

14.
15.
Congestive heart failure (CHF) is most prevalent in aged individuals and elicits a spectrum of cardiovascular and muscular perturbations that impairs the ability to deliver (Qo(2)) and utilize (Vo(2)) oxygen in skeletal muscle. Whether aging potentiates the CHF-induced alterations in the Qo(2)-to-Vo(2) relationship [which determines microvascular Po(2) (Pmv(O(2)))] in resting and contracting skeletal muscle is unclear. We tested the hypothesis that old rats with CHF would demonstrate a greater impairment of skeletal muscle Pmv(O(2)) than observed in young rats with CHF. Phosphorescence quenching was utilized to measure spinotrapezius Pmv(O(2)) at rest and across the rest-to-contractions (1-Hz, 4-6 V) transition in young (Y) and old (O) male Fischer 344 Brown-Norway rats with CHF induced by myocardial infarction (mean left ventricular end-diastolic pressure >20 mmHg for Y(CHF) and O(CHF)). In CHF muscle, aging significantly reduced resting Pmv(O(2)) (32.3 +/- 3.4 Torr for Y(CHF) and 21.3 +/- 3.3 Torr for O(CHF); P < 0.05) and in both Y(CHF) and O(CHF) compared with their aged-matched counterparts, CHF reduced the rate of the Pmv(O(2)) fall at the onset of contractions. Moreover, across the on-transient and in the subsequent steady state, Pmv(O(2)) values in O(CHF) vs. Y(CHF) were substantially lower (for steady-state, 20.4 +/- 1.7 Torr for Y(CHF) and 16.4 +/- 2.0 Torr for O(CHF); P < 0.05). At rest and during contractions in CHF, the pressure driving blood-muscle O(2) diffusion (Pmv(O(2))) is substantially decreased in old animals. This finding suggests that muscle dysfunction and exercise intolerance in aged CHF patients might be due, in part, to the failure to maintain a sufficiently high Pmv(O(2)) to facilitate blood-muscle O(2) exchange and support mitochondrial ATP production.  相似文献   

16.
We tested the hypothesis that aged animals are as responsive as the young adult animals in expanding collateral vasculature under a similar treatment of basic fibroblast growth factor (bFGF). Two age groups of male Fischer 344 rats (11 mo old; n = 32, 23 mo old; n = 43) weighing approximately 385 g were subdivided into normal, acute ligation [femoral artery (FA) ligated 3 days before blood flow (BF) measurement] or ligated groups for 16 days and received recombinant human bFGF intra-arterial infusion at doses of 0, 0.5, 5, and 50 microg x kg(-1) x day(-1). BF was determined with (85)Sr- and (141)Ce-labeled microspheres during treadmill running at 15 and 20 m/min at 15% grade. Blood pressure (BP) values were approximately 149 and approximately 163 mmHg (p < 0.05); heart rates were approximately 496 and approximately 512 beats/min in the aged and young adult groups during running, respectively. Maximal collateral BF values were confirmed by no additional BF increase in the calf muscle at the higher speed. Ligation of the FA for 3 days reduced the BF reserve to the calf muscle by approximately 90%. Calf muscle BF was modestly greater (10 ml x min(-1) x 100 g(-1)) by 16 days in the carrier group. bFGF infusion expanded collateral BF in a dose-dependent manner with an increase of 33 and 42 ml x min(-1) x 100 g(-1) (P < 0.001) in the 5 and 50 microg x kg(-1) x day(-1) bFGF groups, respectively. Aged animals showed similar BF improvements as observed with the adult groups in response to ligation surgery and bFGF treatment. Our data indicate that the aged rats (approximately 23 mo old) remain responsive to exogenous bFGF induced in developing collateral-dependent BF as the young adult (approximately 11 mo old) controls. This suggests that the influence of bFGF in expanding collateral BF should not be preempted in the aged group, the population most affected by peripheral arterial insufficiency.  相似文献   

17.
Previous studies have demonstrated that the metabolic syndrome is associated with impaired skeletal muscle arteriolar function, although integrating observations into a conceptual framework for impaired perfusion in peripheral vascular disease (PVD) has been limited. This study builds on previous work to evaluate in situ arteriolar hemodynamics in cremaster muscle of obese Zucker rats (OZR) to integrate existing knowledge into a greater understanding of impaired skeletal muscle perfusion. In OZR cremaster muscle, perfusion distribution at microvascular bifurcations (γ) was consistently more heterogeneous than in controls. However, while consistent, the underlying mechanistic contributors were spatially divergent as altered adrenergic constriction was the major contributor to altered γ at proximal microvascular bifurcations, with a steady decay with distance, while endothelial dysfunction was a stronger contributor in distal bifurcations with no discernible role proximally. Using measured values of γ, we found that simulations predict that successive alterations to γ in OZR caused more heterogeneous perfusion distribution in distal arterioles than in controls, an effect that could only be rectified by combined adrenoreceptor blockade and improvements to endothelial dysfunction. Intravascular (125)I-labeled albumin tracer washout from in situ gastrocnemius muscle of OZR provided independent support for these observations, indicating increased perfusion heterogeneity that was corrected only by combined adrenoreceptor blockade and improved endothelial function. These results suggest that a defining element of PVD in the metabolic syndrome may be an altered γ at microvascular bifurcations, that its contributors are heterogeneous and spatially distinct, and that interventions to rectify this negative outcome must take a new conceptual framework into account.  相似文献   

18.
Oxygen (O2) extraction is impaired in exercising skeletal muscle of humans with mutations of mitochondrial DNA (mtDNA), but the muscle hemodynamic response to exercise has never been directly investigated. This study sought to examine the extent to which human skeletal muscle perfusion can increase without reductions in blood oxygenation and to determine whether erythrocyte O2 off-loading and related ATP vascular mechanisms are impaired in humans with mutations of mtDNA. Leg vascular hemodynamic, oxygenation and ATP were investigated in ten patients with mtDNA mutations and ten matched healthy control subjects: 1) at rest during normoxia, hypoxia, hyperoxia and intra-femoral artery ATP infusion, and 2) during passive and dynamic one-legged knee-extensor exercises. At rest, blood flow (LBF), femoral arterial and venous blood oxygenation and plasma ATP were similar in the two groups. During dynamic exercise, LBF and vascular conductance increased 9–10 fold in the patients despite erythrocyte oxygenation and leg O2 extraction remained unchanged (p < 0.01). In the patients, workload-adjusted LBF was 28% to 62% higher during submaximal- and maximal exercises and was associated with augmented plasma ATP. The appropriate hemodynamic adjustments during severe hypoxia and ATP infusion suggest that erythrocyte O2 off-loading and related ATP vascular mechanisms are intact in patients with mtDNA mutations. Furthermore, greater increase in plasma ATP and LBF at a given metabolic demand in the patients, in concert with unchanged oxyhemoglobin, suggest that erythrocyte O2 off-loading is not obligatory for the exercise-induced increase in blood flow and intravascular ATP concentration.  相似文献   

19.
20.
Reactive oxygen species, such as hydrogen peroxide (H(2)O(2)), exert a critical regulatory role on skeletal muscle function. Whether acute increases in H(2)O(2) modulate muscle microvascular O(2) delivery-utilization (Qo(2)/Vo(2)) matching [i.e., microvascular partial pressure of O(2) (Pmv(O(2)))] at rest and following the onset of contractions is unknown. The hypothesis was tested that H(2)O(2) treatment (exogenous H(2)O(2)) would enhance Pmv(O(2)) and slow Pmv(O(2)) kinetics during contractions compared with control. Anesthetized, healthy young Sprague-Dawley rats had their spinotrapezius muscles either exposed for measurement of blood flow (and therefore QO(2)), VO(2), and Pmv(O(2)), or exteriorized for measurement of force production. Electrically stimulated twitch contractions (1 Hz, ~7 V, 2-ms pulse duration, 3 min) were evoked following acute superfusion with Krebs-Henseleit (control) and H(2)O(2) (100 μM). Relative to control, H(2)O(2) treatment elicited disproportionate increases in QO(2) and VO(2) that elevated Pmv(O(2)) at rest and throughout contractions and slowed overall Pmv(O(2)) kinetics (i.e., ~85% slower mean response time; P < 0.05). Accordingly, H(2)O(2) resulted in ~33% greater overall Pmv(O(2)), as assessed by the area under the Pmv(O(2)) curve (P < 0.05). Muscle force production was not altered with H(2)O(2) treatment (P > 0.05), evidencing reduced economy during contractions (~40% decrease in the force/VO(2) relationship; P < 0.05). These findings indicate that, although increasing the driving force for blood-myocyte O(2) flux (i.e., Pmv(O(2))), transient elevations in H(2)O(2) impair skeletal muscle function (i.e., reduced economy during contractions), which mechanistically may underlie, in part, the reduced exercise tolerance in conditions associated with oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号