首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different cDNA clones denoted pTO270-6 and pTO270-11 represent two mRNAs that are developmentally regulated during spore germination in Dictyostelium discoideum. The respective mRNAs are found only during early germination and are not present in other stages of growth or multicellular development. Four different genomic clones that hybridize to sequences that are common to both of the 270 cDNA clones were isolated from Dictyostelium libraries and sequenced. Two are the genes for the two cDNAs, and the other two represent genes that do not seem to be transcribed. All four genomic sequences possess a very unusual internal feature in the deduced protein sequences composed of a monotonous repeat of the tetrapeptide threonine-glutamic acid-threonine-proline. The other portions of the proteins have no homology among themselves. The deduced protein corresponding to the 270-6 gene is very similar to avocado (Persea americana) cellulase. Since cellulose in the spore wall has to be digested during spore germination this suggests that this protein may function as an endo-(1,4)-beta-D-glucanase during germination.  相似文献   

2.
3.
During Dictyostelium discoideum spore germination, degradation of the cellulose-containing spore wall is required to allow the amoeba to emerge. The CelA gene, which is transcribed and expressed exclusively during spore germination, codes for a 705-amino-acid protein that has cellulase activity [endo-(1,4)-beta-D-glucanase]. Amoebae transformed by a vector containing the CelA coding sequence or portions of it transcribed from a heterologous promoter expressed and secreted full-length or suitably truncated proteins during vegetative growth when, under normal conditions, these proteins are not made. The gene constructs divided the CelA protein into three domains: a 461-amino-acid N-terminal region that has significant similarity to those of other cellulases and that has been shown to be the catalytic domain; a contiguous 91-residue repeat containing the motif threonine-glutamic acid-threonine-proline, which is glycosylated; and, joined to the repeat, a C-terminal 153-amino-acid sequence that most probably defines a cellulose-binding domain.  相似文献   

4.
When developing cultures of Dictyostelium discoideum are disaggregated at any time prior to cell wall formation and challenged to reinitiate development, amoebae will progress through the original sequence of morphogenetic stages, but the second time through they will do so in roughly one-tenth the original time, a process known as 'rapid recapitulation'. However, if disaggregated cells are suspended in nutrient medium, they enter a program of dedifferentiation during which they lose the capacity to rapidly recapitulate after an 80 minute lag period in a process known as 'erasure'. Here we show that cells that have completed the morphogenetic program and emerge from spore coats in the process of germination have also erased. In addition, the germination-specific 270 gene family is expressed during induced dedifferentiation in a unique fashion, and a germination-defective mutant exhibits a dramatic delay in erasure without concomitant defects in the program of gene regulation accompanying induced dedifferentiation. These results suggest for the first time that induced dedifferentiation and spore germination share some common processes in converting cells from a developmental to vegetative state.  相似文献   

5.
Abstract Spore swelling is a necessary prelude to the emergence of amoebae during spore germination in Dictyostelium discoideum . Previous work has shown that the initiation of this event requires the activity of the calcium-dependent regulatory protein calmodulin. In this study, the use of trifluoperazine, an inhibitor of calmodulin function, has shown that calmodulin activity is required throughout the swelling phase. When fully swollen spores were treated with trifluoperazine they rapidly returned to the same size and shape observed prior to swelling. These data suggest that spore swelling in D. discoideum is a dynamic process which is mediated by calmodulin.  相似文献   

6.
Discadenine, 3-(3-amino-3-carboxypropyl)-6-(3-methyl-2-butenylamino)purine, a spore germination inhibitor of the cellular slime mold Dictyostelium discoideum showed cytokinin activity in the tobacco callus bioassay.  相似文献   

7.
Discadenine,3-(3-amino-3-carboxypropyl)-N6-delta 2-isopentenyladenine, which inhibits spore germination, was previously found in Dictyostelium discoideum. Studies on the distribution of discadenine in different species of cellular slime molds by high-pressure liquid chromatography showed that discadenine is present in D. discoideum, Dictyostelium purpureum, and Dictyostelium mucoroides, but not in Dictyostelium minutum, Polysphondylium violaceum, or Polysphondylium pallidum. Discadenine synthetase, which is involved in biosynthesis of discadenine with N6-delta 2-isopentenyladenine as substrate, was only detected in cells of the former three species. In addition, discadenine inhibited spore germination only in these three species. These results clearly demonstrate that discadenine is produced as an inhibitor of spore germination in the species of cellular slime molds in which the acrasin is cyclic adenosine 5'-monophosphate (AMP). This means that there is a structural and biochemical correlation between the spore germination inhibitor and the acrasin, since 5'-AMP, a direct precursor in discadenine biosynthesis, can be derived from cyclic AMP by hydrolysis with cyclic AMP phosphodiesterase.  相似文献   

8.
Spore germination in Dictyostelium discoideum is a particularly suitable model for studying the regulation of gene expression, since developmentally regulated changes in both protein and mRNA synthesis occur during the transition from dormant spore to amoeba. The previous isolation of three cDNA clones specific for mRNA developmentally regulated during spore germination allowed for the quantitation of the specific mRNAs during this process. The three mRNAs specific to clones pLK109, pLK229, and pRK270 have half-lives much shorter (minutes) than those of constitutive mRNAs (hours). Using spore germination as a model, we studied the roles of ribosome-mRNA interactions and protein synthesis in mRNA degradation by using antibiotics that inhibit specific reactions in protein biosynthesis. Cycloheximide inhibits the elongation step of protein synthesis. Polysomes accumulate in inhibited cells because ribosomes do not terminate normally and new ribosomes enter the polysome, eventually saturating the mRNA. Pactamycin inhibits initiation, and consequently polysomes break down in the presence of this drug. Under this condition, the mRNA is essentially free of ribosomes. pLK109, pLK229, and pRK270 mRNAs were stabilized in the presence of cycloheximide, but pactamycin had no effect on their normal decay. Since it seems likely that stability of mRNA reflects the availability of sites for inactivation by nucleases, it follows that in the presence of cycloheximide, these sites are protected, presumably by occupancy by ribosomes. No ribosomes are bound to mRNA in the presence of pactamycin, and therefore mRNA degrades at about the normal rate. The data further indicate that a labile protein is probably not involved in mRNA decay or stabilization, since protein synthesis is inhibited equally by both antibiotics. We conclude that it may be important to use more than one type of protein synthesis inhibitor to evaluate whether protein synthesis is required for mRNA decay. The effect of protein synthesis inhibition on mRNA synthesis and accumulation was also studied. mRNA synthesis continues in the presence of inhibitors, albeit at a diminished rate relative to that of the uninhibited control.  相似文献   

9.
Dormant spores of Dictyostelium discoideum contained cellulase at a specific activity of 130 to 140 U/mg of protein; when heat activated, the spores germinated, progressively releasing the cellulase activity into the extracellular medium. The cellulase release was a selective process and resulted in recovery of the cellulase activity at a specific activity of 2,000 U/mg of protein; beta-glucosidase in the spores remained completely associated with the emerging amoebae. Release of the cellulase required heat activation of the spores and occurred during the swelling stage of germination; inhibition of the emergence stage with cycloheximide had no effect on the release of the cellulase. The cellulase activity released consisted of two enzymes whose molecular weights were 136,000 and 69,000. Studies of their pH optima, heat lability, and of their sensitivity to inhibition revealed no distinctive differences between these two proteins. Analysis on diethylaminoethyl-Sephadex columns showed that the higher-molecular-weight protein could be converted into the lower-molecular-weight component in vitro.  相似文献   

10.
Yeast exo-β-1,3-glucanase (EXG1) was evaluated as an inhibitory agent of Colletotrichum lupini and Botrytis cinerea. Extracts obtained from yeast transformed with the exg1 gene, expressing high levels of EXG1 activity, or control untransformed yeast cultures that lacked EXG1 activity, were added to different starting concentrations of C. lupini fungal spore suspensions (2.5 × 103 to 80 × 103 spores per flask), and mycelial dry weight was measured after 5 days. Inhibition of C. lupini mycelial growth by EXG1 compared with control extracts ranged from 41 to 20% when added to starting fungal spore concentrations of 2.5 × 103 to 80 × 103, respectively. EXG1 activity in the extracts from the transformed yeast remained high over the 5-day incubation period. Addition of the EXG1 extract after C. lupini spore germination resulted in lower inhibition, indicating that the EXG1 targets the β-glucan in the cell walls of the fungal spores at an early stage of germination. Furthermore, the yeast EXG1 extracts were also shown to inhibit Botrytis cinerea spore germination and growth. Thus, the use of the yeast exg1 gene for protection of crops, such as lupin and pear in transgenic strategies against C. lupini and B. cinerea , respectively, could be considered.  相似文献   

11.
The cytokinin N6-(delta 2-isopentenyl)adenine (i6Ade) is produced during the development of the cellular slime mold, Dictyostelium discoideum, and functions in this organism as the immediate precursor of the spore germination inhibitor, discadenine. The metabolism of i6Ade in axenic cultures of D. discoideum Ax-3 amoebae has been investigated in the present study. An enzyme activity that specifically catalyzes the degradation of i6Ade has been detected in Ax-3 amoebae. This enzyme is similar to the cytokinin oxidases present in higher plant systems and cleaves the N6-side chain of i6Ade to form adenine. Discadenine synthase activity was also detected in axenically cultured Ax-3 amoebae. The cytokinin oxidase activity detected in Dictyostelium decreased during aggregation and development of Ax-3 amoebae and in starving Ax-3 amoebae maintained under either fast-shake (230 rpm) or slow-shake (70 rpm) conditions. In the latter case, the fall in enzyme activity was accelerated by treatment with cyclic AMP. In contrast to these results, discadenine synthase activity in Ax-3 amoebae rose sharply during the culmination phase of development, exhibited little change in starving Ax-3 amoebae maintained under fast-shake conditions, and fell under slow-shake conditions unless the amoebae were treated with cyclic AMP. Possible functions of the Dictyostelium cytokinin oxidase and the significance of the i6Ade metabolism observed in vegetative Dictyostelium amoebae are discussed.  相似文献   

12.
13.
The specific activity of cathepsin B-like, cathepsin D-like, and leucine aminopeptidase enzymes was measured in dormant, aging, and germinating spores of wild-type and mutant Dictyostelium discoideum.The activity of leucine aminopeptidase was relatively constant during spore aging and spore germination. The level of cathepsin D-like activity was highest in young dormant spores but decreased during germination or aging.The level of cathepsin B-like activity remained constant in wild-type spores which were aged for 13 days. The dormant spores of spontaneous germination mutants initially contained low levels of cathepsin B-like activity which increased during aging. Thus, there was no correlation between the level of endogenous cathepsin B activity and the ability to be autoactivated or heat-activated. The level of cathepsin B-like activity does not have a role in the generation of energy for the swelling stage of germination. Finally, the combined level of endogenous and exogenous cathepsin B activity increased more than 20-fold during the emergence of myxamoebae suggesting that the enzyme(s) may play a role at this development stage of germination.  相似文献   

14.
15.
《Developmental biology》1986,117(2):636-643
During spore germination in the cellular slime mold Dictyostelium discoideum, spores swell and then release single amoebae in a highly synchronous manner. A mutant, named HE 1, is unable to complete the sequence. It swells normally but amoebae are not released from the swollen spore. The mutant was used to investigate whether this defect in spore germination affected the orderly progression of appearance and disappearance of mRNAs developmentally regulated during germination. Three previously characterized cDNA clones representing D. discoideum sequences that are modulated during spore germination, and are not present in growing cells, were used as probes. In the wild type, the levels of the respective mRNAs reach a peak early during spore germination (1-1.5 hr) but fall at later times, indicating that their synthesis has stopped and they are rapidly degraded. However, in the mutant, after reaching their maximum levels during germination (also at 1-1.5 hr), the mRNA levels remain high. This is apparently at least partly due to the increased stability of these mRNAs in the mutant compared to the wild type. It is concluded that the time of the onset of synthesis of the mRNAs and the time when their maximum levels is reached are normal in HE 1. However, the later events, the level of mRNA attained, and the subsequent disappearance of these mRNAs are abnormal.  相似文献   

16.
The pattern of release of extracellular cellulase during the germination ofTrichoderma reesei spores has been examined. The four enzymes namely, filter paper degrading enzyme, Β-1,4 endoglucanase, Β-glucosidase and xylanase appear sequentially in the culture broth during germination of the spores. The order of enzyme appearance is not altered by the type of carbon source in the germination medium. Measureable quantities of filter paper degrading enzyme is detected only after the outgrowth has occurred. A possible mechanism of spore germination and induction of the enzymes by insoluble cellulose is suggested. An erratum to this article is available at .  相似文献   

17.
18.
A self-inhibitor of spore germination has been isolated from spores of Dictyostelium discoideum, a cellular slime mold, and chemically characterized as 2-dimethylamino-6-oxypurineriboside.  相似文献   

19.
mRNA specific to cDNA clone pLK109 is present in Dictyostelium discoideum spores, increases about two- to threefold at 0.5 to 1 h during spore germination, and then rapidly decreases. The mRNA is not detectable in vegetative cells or in early multicellular development on filters, but is present late during development, approximately at the time of sporulation. 109 mRNA in spores is 700 nucleotides in length but this is processed during germination by shortening of the poly(A) tail to about 600 nucleotides at 1 to 1.5 hours. pLK109 is a member of a multigene family containing three separate genes, and we have isolated and sequenced all of them. All three sequences code for deduced proteins of 127 amino acid residues, with only a few amino acid differences among them. Gene 1 represents the "transcribed" gene, since all 33 cDNAs we isolated are identical with the cDNA pLK109 and the coding region of this gene. Other open reading frames are in close proximity to each of the 109 sequences. About 200 base-pairs 3' to the gene 1 109 sequence is an open reading frame in the opposite orientation. Gene 2 fragment contains a sequence that codes for a protein similar to trypanosome alpha-tubulin 728 base-pairs 5' to the 109 sequence. Gene 3 fragment possesses two additional putative coding regions, one 5' and another 3' to the 109 gene. There is a remarkable similarity between the 5' upstream regions of all three genes. Each possesses a normal Dictyostelium TATA box and the usual T stretch. In addition, there are many other portions of about 400 to 500 base-pairs of the 5' regions that are either identical for long stretches or very similar.  相似文献   

20.
The drug 4-nitroquinoline 1-oxide (4NQO) is a potent inhibitor of Dictyostelium discoideum spore germination. This inexpensive, water soluble drug is active at a concentration of 5 micrograms/ml (26 microM) and permeates the spore at all stages in germination. Spores subjected to 4NQO treatment exhibit an irreversible blockage of myxamoebae emergence, but spore activation, post-activation lag, and swelling are not affected. Swollen 4NQO-treated spores lose the outer two spore walls but lack the ability to degrade the innermost wall. The drug does not affect oxygen uptake during post-activation lag or swelling, and only a stage specific depression in O2 uptake is observed when control spores begin to release myxamoebae. When added early in germination, 4NQO blocks the incorporation of [3H] uracil into a cold trichloroacetic acid (TCA) insoluble fraction by 98%. However, when the drug is added midway through germination and followed by a pulse labelling period of 1 h, only 65% inhibition of RNA synthesis is observed. This lack of complete inhibition may occur because the drug requires metabolic activation; thus, new rounds of RNA synthesis may have initiated before the drug became fully activated. 4NQO also blocks the de novo expression of beta-glucosidase activity when added early in germination. Additionally, we observe that vegetative cellular slime mold cells are 100 times more resistant than spores to 4NQO-induced damage. Taken together, our results support the observation that RNA synthesis is only required for the emergence stage of germination and that dormant D. discoideum spores may lack efficient excision repair mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号