首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In bovine adrenal chromaffin cells (BACC) histamine promotes a rapid increase in the intracellular levels of Ca2+ together with the release of catecholamines and the phosphorylation of the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH). In this study we investigated the role of the mitogen-activated protein kinases (MAPK) extracellular signal-regulated kinases (ERK1/2), stress activated protein kinase (p38) and Jun N-terminal kinases (JNK) on the histamine-induced activation and phosphorylation of TH. We found that in BACC histamine produced a rapid, long lasting and histamine type-1 (H1) receptor-dependent increase in the phosphorylation levels of ERK1/2, p38 and JNK which was accompanied by a H1 receptor-dependent increase in TH activity. This increase in TH activity was partially blocked by the MEK1/2 inhibitor U0126 but was unaffected by the p38 antagonist SB203580 or the JNK blocker JNKI1. To study the effect of MAPK inhibition on histamine-induced TH phosphorylation, we generated phospho-specific antibodies against the different phosphorylated forms of TH. Treatment with U0126 totally inhibited the histamine-induced phosphorylation of TH at Ser31, without affecting the phosphorylation of either Ser40 or Ser19. Neither SB203580 nor JNKI1 treatments produced any significant modification of the histamine-induced TH phosphorylation. Our data support the hypothesis that the up-regulation of the ERK1/2 pathway, but not that of p38 or JNK, promoted by histamine is involved in the phosphorylation of TH at Ser31 and that this phosphorylation event is required for the full activation of this enzyme.  相似文献   

3.
We reported recently that sphingosine-1-phosphate (S1P) is a novel regulator of aldosterone secretion in zona glomerulosa cells of adrenal glands and that phospholipase D (PLD) is implicated in this process. We now show that S1P causes the phosphorylation of protein kinase B (PKB) and extracellularly regulated kinases 1/2 (ERK 1/2), which is an indication of their activation, in these cells. These effects are probably mediated through the interaction of S1P with the Gi protein-coupled receptors S1P1/3, as pretreatment with pertussis toxin or with the S1P1/3 antagonist VPC 23019 completely abolished the phosphorylation of these kinases. Inhibitors of phosphatidylinositol 3-kinase (PI3K) or mitogen-activated protein kinase kinase (MEK) blocked S1P-stimulated aldosterone secretion. This inhibition was only partial when the cells were incubated independently with inhibitors of each pathway. However, aldosterone output was completely blocked when the cells were pretreated with LY 294002 and PD 98059 simultaneously. These inhibitors also blocked PLD activation, which indicates that this enzyme is downstream of PI3K and MEK in this system. We propose a working model for S1P in which stimulation of the PI3K/PKB and MEK/ERK pathways leads to the stimulation of PLD and aldosterone secretion.  相似文献   

4.
5.
Both insulin and the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) family play important roles in apoptosis and lipid droplet formation. Previously, we reported that CIDEA and CIDEC are differentially regulated by insulin and contribute separately to insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes. However, the upstream signals of CIDE proteins remain unclear. Here, we investigated the signaling molecules involved in insulin regulation of CIDEA and CIDEC expression. The phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and PI-103 blocked both insulin-induced downregulation of CIDEA and upregulation of CIDEC. The Akt inhibitor API-2 and the c-Jun N-terminal kinase (JNK) inhibitor SP600125 selectively inhibited insulin regulation of CIDEA and CIDEC expression, respectively, whereas the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 did not. Small interfering RNA-mediated depletion of Akt1/2 prevented insulin-induced downregulation of CIDEA and inhibition of apoptosis. Depletion of JNK2, but not JNK1, inhibited insulin-induced upregulation of CIDEC and lipid droplet enlargement. Furthermore, insulin increased both Akt and JNK phosphorylation, which was abrogated by the PI3K inhibitors. These results suggest that insulin regulates CIDEA and CIDEC expression via PI3K, and it regulates expression of each protein via Akt1/2- and JNK2-dependent pathways, respectively, in human adipocytes.  相似文献   

6.
NMDA receptors are potentiated by phosphorylation in a subunit- and kinase-specific manner. Both native and recombinant NMDA receptors are inhibited by behaviorally relevant concentrations of ethanol. Whether the phosphorylation state of individual subunits modulates the ethanol sensitivity of these receptors is not known. In this study, the effects of Fyn tyrosine kinase on the ethanol sensitivity of specific recombinant NMDA receptors expressed in HEK 293 cells were investigated. Whole-cell mode patch clamp and ratiometric calcium imaging demonstrated that the degree of ethanol inhibition of NR1/NR2B receptors was unaffected by Fyn tyrosine kinase. In contrast, the inhibition of NR1/NR2A receptors by ethanol (100 mM) was significantly reduced under conditions of enhanced Fyn-mediated tyrosine phosphorylation of the NR2A subunit. This effect was not observed at lower concentrations of ethanol (< or = 50 mM). These results suggest that tyrosine phosphorylation of specific NMDA receptors by Fyn tyrosine kinase may regulate the sensitivity of these receptors to the sedative/hypnotic concentrations of ethanol.  相似文献   

7.
Numerous studies have demonstrated the neuroprotective effects of estrogen in experimental cerebral ischemia. To investigate molecular mechanisms of estrogen neuroprotection in global ischemia, immunoblotting, immunohistochemistry and Nissel-staining analysis were used. Our results showed that chronic pretreatment with beta-estradiol 3-benzoate (E2) enhanced Akt1 activation and reduced the activation of mixed-lineage kinase 3 (MLK3), mitogen-activated protein kinase kinase 4/7 (MKK4/7), and c-Jun N-terminal kinase 1/2 (JNK1/2) in the hippocampal CA1 subfield during reperfusion after 15 min of global ischemia. In addition, E2 reduced downstream JNK nuclear and non-nuclear components, c-Jun and Bcl-2 phosphorylation and Fas ligand protein expression induced by ischemia/reperfusion. Administration of phosphoinositide 3-kinase (PI3K) inhibitor LY 294,002 prevented both activation of Akt1 and inhibition of MLK3, MKK4/7 and JNK1/2. The interaction between ERalpha and the p85 subunit of PI3K was also examined. E2 and antiestrogen ICI 182,780 promoted and prevented this interaction, respectively. Furthermore, ICI 182,780 blocked both the activation of Akt1 and the inhibition of MLK3, MKK4/7 and JNK1/2. Photomicrographs of cresyl violet-stained brain sections showed that E2 reduced CA1 neuron loss after 5 days of reperfusion, which was abolished by ICI 182,780 and LY 294,002. Our data indicate that in response to estrogen, ERalpha interacts with PI3K to activate Akt1, which may inhibit the MLK3-MKK4/7-JNK1/2 pathway to protect hippocampal CA1 neurons against global cerebral ischemia in male rats.  相似文献   

8.
The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase) inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.  相似文献   

9.
We have previously shown that liposomes coated with a neoglycolipid constructed from mannotriose and dipalmitoylphosphatidylethanolamine (Man3-DPPE) activate peritoneal macrophages to induce enhanced expression of co-stimulatory molecules and MHC class II. In this study, we investigated the signaling pathways activated by the Man3-DPPE-coated liposomes (OMLs) in a murine macrophage cell line, J774A.1. In response to OML stimulation, ERK among MAPKs was clearly and transiently phosphorylated in J774 cells. ERK phosphorylation was also induced by treatment of the cells with Man3-DPPE and Man3-BSA, but not by uncoated liposomes. In addition, rapid and transient phosphorylation of Akt and Src family kinases (SFKs) was observed in response to OMLs. OML-induced ERK phosphorylation was inhibited by specific inhibitors of PI3K and SFKs, and OML-induced Akt phosphorylation was inhibited by a inhibitor of SFKs. Therefore, OMLs may activate the PI3K/Akt pathway through phosphorylation of Src family kinases to induce ERK activation.  相似文献   

10.
By adulthood, sympathetic neurons have lost dependence on NGF and NT-3 and are able to survive in culture without added neurotrophic factors. To understand the molecular mechanisms that sustain adult neurons, we established low density, glial cell-free cultures of 12-wk rat superior cervical ganglion neurons and manipulated the function and/or expression of key proteins implicated in regulating cell survival. Pharmacological inhibition of PI 3-kinase with LY294002 or Wortmannin killed these neurons, as did dominant-negative Class IA PI 3-kinase, overexpression of Rukl (a natural inhibitor of Class IA PI 3-kinase), and dominant-negative Akt/PKB (a downstream effector of PI 3-kinase). Phospho-Akt was detectable in adult sympathetic neurons grown without neurotrophic factors and this was lost upon PI 3-kinase inhibition. The neurons died by a caspase-dependent mechanism after inhibition of PI 3-kinase, and were also killed by antisense Bcl-xL and antisense Bcl-2 or by overexpression of Bcl-xS, Bad, and Bax. These results demonstrate that PI 3-kinase/Akt signaling and the expression of antiapoptotic members of the Bcl-2 family are required to sustain the survival of adult sympathetic neurons.  相似文献   

11.
12.
The present study examined the existence of the adenosine A(1),A(2A), and A(2B) receptors and the effect of receptor activation on cAMP accumulation and protein phosphorylation in primary rat skeletal muscle cells. Presence of mRNA and protein for all three receptors was demonstrated in both cultured and adult rat skeletal muscle. NECA (10(-9)-10(-4)M) increased the cAMP concentration in cultured muscle cells with an EC(50) of (95% confidence interval)=15 (5.9-25.1) micro M, whereas CGS 21680 (10(-9)-10(-4)M) had no effect on cAMP accumulation. Concentrations of [R]-PIA below 10(-6)M had no effect on cAMP accumulation induced by either isoproterenol or forskolin. NECA resulted in phosphorylation of CREB with an EC(50) of (95% confidence interval)=1.7 (0.40-7.02) micro M, whereas ERK1/2 and p38 phosphorylation was unchanged. The results show that, although the A(1),A(2A), and A(2B) receptors are all present in skeletal muscle cells, the effect of adenosine on adenylyl cyclase activation and phosphorylation of CREB is mainly mediated via the adenosine A(2B) receptor.  相似文献   

13.
Excessive generation of reactive oxygen species (ROS) has been implicated in the pathogenesis of many diseases, including atherosclerosis, hypertension, and vascular complications of diabetes. However, the precise mechanisms by which ROS contribute to the development of these diseases are not fully characterized. Hydrogen peroxide (H2O2), a ROS, has been shown to activate several signaling protein kinases, such as extracellular signal-regulated kinase (ERK)1/2 and protein kinase B (PKB) in different cell types, notably in vascular smooth muscle cells. Because these pathways regulate cellular mitogenesis, migration, proliferation, survival, and death responses, their aberrant activtion has been suggested to be a potential mechanism of ROS-induced pathologies. The upstream elements responsible for H2O2-induced ERK1/2 and PKB activation remain poorly characterized, but a potential role of receptor and nonreceptor protein tyrosine kinases (PTKs) as triggers that initiate such events has been postulated. Therefore, the aim of this review is to highlight the involvement of receptor and nonreceptor PTKs in modulating H2O2-induced ERK1/2 and PKB signaling.  相似文献   

14.
We previously showed that lovastatin, an HMG-CoA reductase inhibitor, suppresses cell growth by inducing apoptosis in rat brain neuroblasts. Our aim was to study intracellular signalling induced by lovastatin in neuroblasts. Lovastatin significantly decreases the phosphoinositide 3-kinase (PI3-K) activity in a concentration-dependent manner. Expression of p85 subunit and its association with phosphotyrosine-containing proteins are unaffected by lovastatin. Lovastatin decreases protein kinase B (PKB)/Akt phosphorylation, and its downstream effectors, p70S6K and the eukaryotic initiation factor 4E (eIF4E) regulatory protein 1, 4E-BP1, in a concentration-dependent manner, and reduces p70S6K expression. Lovastatin effects are fully prevented with mevalonate. Only the highest dose of PI3-K inhibitors that significantly reduce PI3-K kinase activity induces apoptosis in neuroblasts but to a lower degree than lovastatin. In summary, this work shows that treatment of brain neuroblasts with lovastatin leads to an inhibition of the main pathway that controls cell growth and survival, PI3-K/PKB and the subsequent blockade of downstream proteins implicated in the regulation of protein synthesis. This work suggests that inactivation of the antiapoptotic PI3-K appears insufficient to induce the degree of neuroblasts apoptosis provoked by lovastatin, which must necessarily involve other intracellular pathways. These findings might contribute to elucidate the molecular mechanisms of some statins effects in the central nervous system.  相似文献   

15.
Primary cortical neurones exposed to an oxidative insult in the form of hydrogen peroxide (H(2)O(2)) for 30 min showed a concentration-dependent increase in oxidative stress followed by a delayed NMDA receptor-dependent cell death measured 24 h later. Extracellular signal-regulated protein kinase (ERK1/2), c-jun N-terminal kinase (JNK) and the kinase Akt/PKB may regulate neuronal viability in response to oxidative insults. Using phospho-specific antibodies, a 15-min stimulation of neurones with H(2)O(2) (100 microm - 1 mm) produced a concentration-dependent phosphorylation of ERK1/2 and Akt/PKB that was partly dependent on extracellular Ca(2+) and phosphatidylinositol 3-kinase (PI3-K). Higher concentrations of H(2)O(2) (1 mm) also stimulated a phosphorylation of JNK which was totally dependent on extracellular Ca(2+) but not PI3-K. H(2)O(2)-induced phosphorylation of ERK1/2, Akt/PKB or JNK were unaffected by the NMDA channel blocker MK801. Blocking ERK1/2 activation with the upstream inhibitor U0126 (10 microm) enhanced H(2)O(2)-induced (100-300 microm range) neurotoxicity and inhibited H(2)O(2)-mediated phosphorylation of the cyclic AMP regulatory binding protein (CREB), suggesting that ERK1/2 signals to survival under these conditions. At higher concentrations (mm), H(2)O(2)-stimulated a phosphorylation of c-jun. It is likely, therefore, that subjecting neurones to moderate oxidative-stress recruits pro-survival signals to CREB but during severe oxidative stress pro-death signals through JNK and c-jun are dominant.  相似文献   

16.
The conversion of a host‐encoded PrPsen (protease‐sensitive cellular prion protein) into a PrPres (protease‐resistant pathogenic form) is a key process in the pathogenesis of prion diseases, but the intracellular mechanisms underlying PrPres amplification in prion‐infected cells remain elusive. To assess the role of cytoskeletal proteins in the regulation of PrPres amplification, the effects of cytoskeletal disruptors on PrPres accumulation in ScN2a cells that were persistently infected with the scrapie Chandler strain have been examined. Actin microfilament disruption with cytochalasin D enhanced PrPres accumulation in ScN2a cells. In contrast, the microtubule‐disrupting agents, colchicine, nocodazole and paclitaxel, had no effect on PrPres accumulation. In addition, a PI3K (phosphoinositide 3‐kinase) inhibitor, wortmannin and an Akt kinase inhibitor prevented the cytochalasin D‐induced enhancement of PrPres accumulation. Cytochalasin D‐induced extension of neurite‐like processes might correlate with enhanced accumulation of PrPres. The results suggest that the actin cytoskeleton and PI3K/Akt pathway are involved in the regulation of PrPres accumulation in prion‐infected cells.  相似文献   

17.
Etscheid M  Beer N  Dodt J 《Cellular signalling》2005,17(12):1486-1494
The hyaluronan-binding protease (HABP) is a serine protease in human plasma which is structurally related to plasminogen activators, coagulation factor XII and hepathocyte growth factor activator. It can in vitro activate the coagulation factor FVII, kininogen and plasminogen activators. The present study was initiated to gain a more complete picture of the cell-associated activities of this fibrinolysis-related protease. Treatment of lung fibroblasts with HABP lead to a rapid activation of signalling pathways, including the mitogen-activated protein kinase (MAPK) pathway with c-Raf, MEK and ERK1/2. Additionally the activation of the PI3K/Akt pathway and of several translation-related proteins was found. Proliferation assays confirmed the assumption of a strong growth-stimulating effect of HABP on human lung and skin fibroblasts. Intracellular signalling and growth stimulation were strongly dependent on the proteolytic activity of HABP. Stimulation of signalling and proliferation by HABP involved the fibroblast growth factor receptor 1 (FGFR-1). HABP-stimulated proliferation of lung fibroblasts MRC-5 was accompanied by a significant intracellular increase in basic fibroblast growth factor (bFGF), the major ligand of FGFR-1; bFGF could however not be identified in the supernatant of HABP-treated cells. Though, the conditioned medium from HABP-treated cells showed a strong growth-promoting activity on quiescent fibroblasts, indicating the release of a yet unknown growth factor amplifying the initial growth stimulus. In a two-dimensional wound model HABP stimulated the invasion of fibroblasts into a scratch area, adding a strong pro-migratory activity to this plasma protease. In summary, HABP exhibits a significant growth factor-like activity on quiescent human lung and dermal fibroblasts. Our findings suggest that this fibrinolysis-related plasma protease may participate in physiologic or pathologic processes where cell proliferation and migration are pivotal, like tissue repair, vascular remodelling, wound healing or tumor development.  相似文献   

18.
Regulator of G protein signaling (RGS) proteins are GTPase-activating proteins for heterotrimeric G proteins. One of the best-studied RGS proteins, RGS4, accelerates the rate of GTP hydrolysis by all G(i) and G(q) alpha subunits yet has been shown to exhibit receptor selectivity. Although RGS4 is expressed primarily in brain, its effect on modulating the activity of serotonergic receptors has not yet been reported. In the present study, transfected BE(2)-C human neuroblastoma cells expressing human 5-HT(1B) receptors were used to demonstrate that RGS4 can inhibit the coupling of 5-HT(1B) receptors to cellular signals. Serotonin and sumatriptan were found to stimulate activation of extracellular signal-regulated kinase. This activation was attenuated, but not completely inhibited, by RGS4. Similar inhibition by RGS4 of the protein kinase Akt was also observed. As RGS4 is expressed at high levels in brain, these results suggest that it may play a role in regulating serotonergic pathways.  相似文献   

19.
Akt signalling in health and disease   总被引:1,自引:0,他引:1  
Akt (also known as protein kinase B or PKB) comprises three closely related isoforms Akt1, Akt2 and Akt3 (or PKBα/β/γ respectively). We have a very good understanding of the mechanisms by which Akt isoforms are activated by growth factors and other extracellular stimuli as well as by oncogenic mutations in key upstream regulatory proteins including Ras, PI3-kinase subunits and PTEN. There are also an ever increasing number of Akt substrates being identified that play a role in the regulation of the diverse array of biological effects of activated Akt; this includes the regulation of cell proliferation, survival and metabolism. Dysregulation of Akt leads to diseases of major unmet medical need such as cancer, diabetes, cardiovascular and neurological diseases. As a result there has been substantial investment in the development of small molecular Akt inhibitors that act competitively with ATP or phospholipid binding, or allosterically. In this review we will briefly discuss our current understanding of how Akt isoforms are regulated, the substrate proteins they phosphorylate and how this integrates with the role of Akt in disease. We will furthermore discuss the types of Akt inhibitors that have been developed and are in clinical trials for human cancer, as well as speculate on potential on-target toxicities, such as disturbances of heart and vascular function, metabolism, memory and mood, which should be monitored very carefully during clinical trial.  相似文献   

20.
Normal fibroblast subpopulations have differential surface expression of the GPI-linked raft protein Thy-1, which correlates with differences in cellular adhesion and migration in vitro. Thrombospondin-1 (TSP-1) induces an intermediate state of adhesion in fibroblasts and other cells which facilitates migration. TSP-1 and the hep I peptide derived from the amino-terminal/heparin-binding domain of TSP-1 induce disassembly of cellular focal adhesions. Our lab previously reported that the induction of focal adhesion disassembly in fibroblasts by TSP-1 or by hep I requires surface expression of Thy-1, as well as lipid raft integrity and Src family kinase (SFK) signaling. We now report that TSP-1/hep I-induced fibroblast migration requires Thy-1 expression and FAK phosphorylation, and that following TSP-1/hep I stimulation, Thy-1 associates with FAK and SFK in a lipid raft-dependent manner. Furthermore, the GPI anchor of Thy-1, which localizes the protein to specific lipid raft microdomains, is necessary for hep I-induced FAK and SFK phosphorylation, focal adhesion disassembly, and migration. This is the first report of an association between Thy-1 and FAK. Thy-1 modulates SFK and FAK phosphorylation and subcellular localization, promoting focal adhesion disassembly and migration in fibroblasts, following exposure to TSP-1/hep I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号