首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution conformation of a model hexapeptide Asp-Arg-Gly-Asp-Ser-Gly (DRGDSG) containing the RGD sequence has been studied in DMSO-d6 as well as in aqueous solution (H2O:D2O/90:10%) by 1H NMR spectroscopy. The unambiguous identification of spin systems of various amino acid residues and sequence specific assignment of all proton resonances was achieved by a combination of two dimensional COSY and NOESY experiments. The temperature coefficient data of the amide proton chemical shifts in conjunction with the vicinal coupling constants, i.e. 3JNH-C alpha H, NOESY and ROESY results indicate that the peptide in both the solvents exists in a blend of conformers with beta-sheet like extended backbone structure and folded conformations. The folded conformers do not appear to be stabilised by intramolecular hydrogen bonding. Our results are consistent with the flexibility of RGD segment observed in the NMR studies on the protein echistatin containing the RGD motif (references 23-25).  相似文献   

2.
The nonapeptide less than Glu-Ala-Lys-Ser-Gln-Gly-Gly-Ser-Asn (formerly called serum thymic factor) is a factor produced by the thymic epithelium, which needs a zinc ion to express its immunoregulatory properties. We report here on 1H and 13C NMR investigation of the conformational properties of the free peptide in aqueous medium and in dimethyl sulfoxide-d6 solution by a combination of homo- and heteronuclear one- and two-dimensional experiments. The various resonances have been assigned in a straightforward manner on the basis of 1H,1H COSY spectroscopy for the recognition of the proton spin systems; two-dimensional NOESY spectra with the correlation peaks across amide bonds and for the amino acid sequence assignment; amide bonds and for the amino acid sequence assignment; 13C,1H COSY experiments using selective polarization transfer from 1H- to 13C-nucleus via the 13C,1H long-range couplings for the attribution of the carboxyl and carbonyl groups; and 13C,1H COSY experiments with selective polarization transfer via the 13C,1H direct couplings for the assignment of all the aliphatic carbons. Other experiments such as pH-dependent chemical shifts, combined use of multiple and selective proton-decoupled 1H and 13C NMR spectra, the temperature and the concentration dependence of the proton shifts of the amide resonances, the solvent dependences of peptide carbonyl carbon resonances, and comparison of the spectra with three different analogues were performed. In aqueous solution, the data are compatible with the assumption of a highly mobile dynamic equilibrium among different conformations, whereas in dimethyl sulfoxide-d6, a more rigid structure is found involving three internal hydrogen bonds. These observations provide an insight into the conformational tendencies of this peptidic hormone in two different media.  相似文献   

3.
H NMR resonances of [cyclo (9----18) Lys1, Gly6]bradykinin (CBK) in (CD3)2SO and H2O solution have been assigned by combined analysis of two-dimensional COSY and NOESY spectra. The presence of two slowly interchangeable conformers of CBK in (CD3)2SO is established, the minor conformer not exceeding 15% in the population. The minor conformer is absent from the aqueous solution, chemical shifts of the CBK and bradykinin NH and C alpha H protons differ insignificantly. The major CBK conformer contains at least two X-Pro trans-peptide groups and three amide protons NH Phe5, NH Arg9 and N zeta H Lys1 protected from solvent. A system of cross-peaks from the NOESY spectra of CBK in (CD3)2SO has been analysed and the maximum distance between backbone protons and neighbouring amino acid residues evaluated. The experimental data agree well with the assumed type II beta-bend in the sequence Pro2-Pro3-Gly4-Phe5. Spatial structure models for the backbone fragment 6-9 of CBK containing two intramolecular hydrogen bonds that involve the NH Arg9 and N zeta H Lys1 protons and the carbonyl groups of Phe5 and Gly4 are proposed.  相似文献   

4.
The (1)H chemical shifts, coupling constants, temperature coefficients, exchange rates, and inter-residual ROEs have been measured, in aqueous solution, for the hydroxy and amine/amide proton resonances of a set of beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->2)-alpha-D-Manp-(1-->O)(CH(2))(7)CH(3) analogues. From the structural data, a few significant structural features could be ascertained, such as a preferential anti-conformation for the amide protons of the N-acetyl and N-propionyl groups. The introduction of systematic modifications at Gal 2-C and Gal 6-C resulted in alterations of the Gal 4-OH, Gal 3-OH, and GlcNAc 3-OH areas, since variations in chemical shifts and temperature coefficient were observed. In order to verify the possibility of hydrogen bonds, molecular dynamics simulations in the gas phase and explicit solvent were performed and correlated with the experimental data. A network of hydrogen bonds to solvent molecules was observed, but no strong intramolecular hydrogen bonding was observed.  相似文献   

5.
Heteronuclear NMR methods have been used to probe the conformation of four complexes of Escherichia coli dihydrofolate reductase (DHFR) in solution. (1)H(N), (15)N, and (13)C(alpha) resonance assignments have been made for the ternary complex with folate and oxidized NADP(+) cofactor and the ternary complex with folate and a reduced cofactor analog, 5,6-dihydroNADPH. The backbone chemical shifts have been compared with those of the binary complex of DHFR with the substrate analog folate and the binary complex with NADPH (the holoenzyme). Analysis of (1)H(N) and (15)N chemical shifts has led to the identification of marker resonances that report on the active site conformation of the enzyme. Other backbone amide resonances report on the presence of ligands in the pterin binding pocket and in the adenosine and nicotinamide-ribose binding sites of the NADPH cofactor. The chemical shift data indicate that the enzyme populates two dominant structural states in solution, with the active site loops in either the closed or occluded conformations defined by X-ray crystallography; there is no evidence that the open conformation observed in some X-ray structures of E. coli DHFR are populated in solution.  相似文献   

6.
A NOE independent NMR method is proposed to characterize unambiguously residues involved in low populated isolated peptide helices. The method is based on the comparison of amide and H alpha chemical shift changes originated upon the addition of stabilizing or denaturing agents with true helical conformational shifts that have been measured for the first time using an isolated model peptide helix, the one formed by Ac-(Leu-Lys-Lys-Leu)3-NHEt in aqueous solution.  相似文献   

7.
Proton nuclear magnetic resonance parameters are reported for DMSO-d6 solutions of the eosinophil chemotactic tetrapeptides, Val1-Gly2-Ser3-Glu4 and Ala1-Gly2-Ser3-Glu4, as well as three analogues of the Val1 tetrapeptide, D-Val1, Ala2 and Ala3. The synthesis of Val-(S)-[alpha-2 H1] Gly-Ala-Glu, in which the glycine has been stereospecifically deuterated in the H alpha 3 position, has allowed the assignment of the 1H resonances belonging to individual H alpha 2 and H alpha 3 glycine methylene protons. Simulation of the glycine ABX spin system yields two vicinal coupling constants which are consistent with a highly preferred conformation about the glycine HN-C alpha bond. The chemical shifts, coupling constants, temperature coefficients of amide proton chemical shifts and calculated side chain rotamer populations are reported for all peptides. The coupling constant analysis and temperature coefficients of amide proton chemical shifts together suggest that a type I beta-turn conformation is preferred by the Ala3 analogue. The 1H n.m.r. parameters of the other peptides suggest that these can also adopt a beta-turn conformation in DMSO. There are, however, considerable differences in the extent of conformational averaging undergone by the various peptides.  相似文献   

8.
9.
We examined the hydration of amides of alpha(3)D, a simple, designed three-helix bundle protein. Molecular dynamics calculations show that the amide carbonyls on the surface of the protein tilt away from the helical axis to interact with solvent water, resulting in a lengthening of the hydrogen bonds on this face of the helix. Water molecules are bonded to these carbonyl groups with partial occupancy ( approximately 50%-70%), and their interaction geometries show a large variation in their hydrogen bond lengths and angles on the nsec time scale. This heterogeneity is reflected in the carbonyl stretching vibration (amide I' band) of a group of surface Ala residues. The surface-exposed amides are broad, and shift to lower frequency (reflecting strengthening of the hydrogen bonds) as the temperature is decreased. By contrast, the amide I' bands of the buried (13)C-labeled Leu residues are significantly sharper and their frequencies are consistent with the formation of strong hydrogen bonds, independent of temperature. The rates of hydrogen-deuterium exchange and the proton NMR chemical shifts of the helical amide groups also depend on environment. The partial occupancy of the hydration sites on the surface of helices suggests that the interaction is relatively weak, on the order of thermal energy at room temperature. One unexpected feature that emerged from the dynamics calculations was that a Thr side chain subtly disrupted the helical geometry 4-7 residues N-terminal in sequence, which was reflected in the proton chemical shifts and the rates of amide proton exchange for several amides that engage in a mixed 3(10)/alpha/pi-helical conformation.  相似文献   

10.
The aqueous solution conformation of the bicyclic, 21 amino acid vasoconstrictor peptide, endothelin-1, has been determined using two dimensional NMR and a combination of distance geometry and molecular dynamics. The dominant structural feature is a helical region between Lys9 and Cys15 characterized by strong NHi-NHi+1 NOEs and several long range NOEs spanning 3 to 5 residues. Solvent inaccessibility and possible hydrogen bonding in the Cys3-Cys11 loop is suggested by the temperature independence of the chemical shifts of several amide protons. There is no evidence for association of the C-terminal hexapeptide with the bicyclic region.  相似文献   

11.
Two-dimensional NMR studies of the antimicrobial peptide NP-5   总被引:5,自引:0,他引:5  
A C Bach  M E Selsted  A Pardi 《Biochemistry》1987,26(14):4389-4397
Nearly complete proton resonance assignment of the rabbit antimicrobial peptide NP-5 has been made from two-dimensional NMR data taken at a single temperature. The assignment procedure involved acquisition of phase-sensitive double-quantum-filtered correlation spectra, relayed coherence-transfer spectra, total correlation (homonuclear Hartmann-Hahn) spectra, double- and triple-quantum spectra, and nuclear Overhauser effect spectra. The combination of these complementary experiments simplified and accelerated resonance assignment of the peptide. Individual assignments were made at 20 degrees C for all amide and C alpha protons in the peptide, and for all nonlabile side-chain protons on 26 of the 33 amino acid residues in NP-5. Analysis of the proton-proton nuclear Overhauser effect connectivities, the slowly exchanging amide protons, and the proton chemical shifts in NP-5 indicates that the peptide has a stable, ordered structure in solution. These data also indicate that residues 19-29 in NP-5 are involved in an antiparallel beta-sheet that has a hairpin conformation.  相似文献   

12.
The solvent exchange rates of the acetamido hydrogen of the 2-acetamido-2-deoxy-beta-D-glucopyranosyl unit of group A streptococcal polysaccharide dissolved in H2O have been measured and compared with the corresponding exchange rates in the solvated model compound 1-O-methyl-2-acetamido-2-deoxy-beta-D-glucopyranoside. Amide hydrogen exchange rates were measured at 25 degrees C over a wide pH range by a combination of two separate NMR techniques: the transfer of solvent saturation and the amide hydrogen saturation recovery NMR experiments. The data indicate that the acetamido hydrogen essentially exists in a solvated environment and that its contribution to the conformational stability of this polysaccharide through intramolecular hydrogen bonding is negligible.  相似文献   

13.
The present work describes the dynamics of the apo form of cytochrome b(562), a small soluble protein consisting of 106 amino acid residues [Itagaki, E., and Hager, L. P. (1966) J. Biol. Chem. 241, 3687-3695]. The presence of exchange in the millisecond time scale is demonstrated for the last part of helix IV (residues 95-105 in the holo form). The chemical shift index analysis [Wishart, D. S., and Sykes, B. D. (1994) J. Biomol. NMR 4, 171-180] based on H(alpha), C(alpha), C(beta), and C' chemical shifts suggests a larger helical content than shown in the NMR structure based on NOEs. These results indicate the presence of helical-like conformations participating in the exchange process. This hypothesis is consistent with amide deuterium exchange rates and the presence of some hydrogen bonds identified from amide chemical shift temperature coefficients [Baxter, N. J., and Williamson, M. P. (1997) J. Biomol. NMR 9, 359-369]. (15)N relaxation indicates limited mobility for the amide protons of this part of the helix in the picosecond time scale. A 30 ns stochastic dynamics simulation shows small fluctuations around the helical conformation on this time scale. These fluctuations, however, do not result in a significant decrease of the calculated order parameters which are consistent with the experimental (15)N relaxation data. These results resolve an apparent discrepancy in the NMR structures between the disorder observed in helix IV due to a lack of NOEs and the secondary structure predictions based on H(alpha) chemical shifts [Feng, Y., Wand, A. J., and Sligar, S. G. (1994) Struct. Biol. 1, 30-35].  相似文献   

14.
Calculated and experimental (1)H, (13)C and (19)F chemical shifts were compared in BKM-824, a cyclic bradykinin antagonist mimic, c[Ava(1)-Igl(2)-Ser(3)-DF5F(4)-Oic(5)-Arg(6)] (Ava=5-aminovaleric acid, Igl=alpha-(2-indanyl)glycine, DF5F=pentafluorophenylalanine, Oic=(2S,3aS,7aS)-octahydroindole-2-carboxylic acid). The conformation of BKM-824 has been studied earlier by NMR spectroscopy (M. Miskolzie et al., J. Biomolec. Struct. Dyn. 17, 947-955 (2000)). All NMR structures have qualitatively the same backbone structure but there is considerable variation in the side chain conformations. We have carried out quantum mechanical optimization for three representative NMR structures at the B3LYP/6-31G* level, constraining the backbone dihedral angles at their NMR structure values, followed by NMR chemical shift calculations at the optimized structures with the 6-311G** basis set. There is an intramolecular hydrogen bond at Ser(3) in the optimized structures. The experimental (13)C chemical shifts at five C(alpha) positions as well as at the Cbeta, Cgamma and Cdelta position of Ava(1), which forms part of the backbone, are well reproduced by the calculations, confirming the NMR backbone structure. A comparison between the calculated and experimental H(beta) chemical shifts in Igl(2) shows that the dominant conformation at this residue is gauche. Changes of proton chemical shifts with the scan of the chi(1) angle in DF5F(4) suggest that chi(1)180 degrees. The calculated (1)H and (13)C chemical shifts are in good agreement with experiment at the rigid residue Oic(5). None of the models gives accurate results for Arg(6), presumably because of its positive charge. Our study indicates that calculated NMR shifts can be used as additional constraints in conjunction with NMR data to determine protein conformations. However, to be computationally effective, a database of chemical shifts in small peptide fragments should be precalculated.  相似文献   

15.
The effects of N-terminal amino acid stereochemistry on prolyl amide geometry and peptide turn conformation were investigated by coupling both L- and D-amino acids to (2S, 5R)-5-tert-butylproline and L-proline to generate, respectively, N-(acetyl)dipeptide N'-methylamides 1 and 2. Prolyl amide cis- and trans-isomers were, respectively, favored for peptides 1 and 2 as observed by proton NMR spectroscopy in water, DMSO and chloroform. The influence of solvent composition on amide proton chemical shift indicated an intramolecular hydrogen bond between the N'-methylamide proton and the acetamide carbonyl for the major conformer of dipeptides (S)-1, that became less favorable in (R)-1 and 2. The coupling constant (3J(NH,alpha)) values for the cis-isomer of (R)-1 indicated a phi2 dihedral angle value characteristic of a type VIb beta-turn conformation in solution. X-ray crystallographic analysis of N-acetyl-D-leucyl-5-tert-butylproline N'-methylamide (R)-lb showed the prolyl residue in a type VIb beta-turn geometry possessing an amide cis-isomer and psi3-dihedral angle having a value of 157 degrees, which precluded an intramolecular hydrogen bond. Intermolecular hydrogen bonding between the leucyl residues of two turn structures within the unit cell positioned the N-terminal residue in a geometry where their phi2 and psi2 dihedral angle values were not characteristic of an ideal type VIb turn. The circular dichroism spectra of tert-butylprolyl peptides (S)- and (R)-1b were found not to be influenced by changes in solvent composition from water to acetonitrile. The type B spectrum exhibited by (S)-1b has been previously assigned to a type VIa beta-turn conformation [Halab L, Lubell WD. J. Org. Chem. 1999; 64: 3312-3321]. The type C spectrum exhibited by the (R)-lb has previously been associated with type II' beta-turn and alpha-helical conformations in solution and appears now to be also characteristic for a type VIb geometry.  相似文献   

16.
The NH exchange rates in aqueous media of oxytocin and 8-lysine vasopressin (LVP) have been measured by using transfer of solvent saturation method. The data are consistent with a "highly motile" dynamic equilibrium between folded and highly solvated conformations. The highly-motility limit applies to the exchange of NH hydrogens of oxytocin and LVP. Folded structures are more prevalent in oxytocin than in LVP. Partial shielding is indicated for peptide hydrogens of Asn5 and perhaps also Cys6 of oxytocin and for Cys6 of LVP. It is tentatively proposed that the folded conformation of oxytocin in aqueous media may contain a parallel beta-structure in the tocinamide ring consisting of two hydrogen bonds: one between the Tyr2 C = O and Asn5 peptide NH as originally proposed for the preferred conformation of oxytocin in dimethyl sulfoxide (D. W. Urry and R. Walter), and the second between he Cys1 C = O and the Cys6 NH. In LVP the hydrogen bond between the Tyr2 C = O and Asn5 peptide NH appears to be absent. The acylic tripeptide sequences (-Pro-X-Gly-NH2) of both hormones appear to be predominantly solvated. The second-order rate constants for acid catalyzed exchange of the primary amide hydrogens of Gln4, Asn5, and Gly9 of oxytocin are consistently greater for the trans NH than for the corresponding cis NH. This observation can be rationalized in terms of mechanisms involving protonation of either the amide oxygen, or the amide nitrogen, but with limited rotation about the C - N bond.  相似文献   

17.
The solution conformation of melanostatin (Pro-Leu-Gly-NH2) in the neutral and protonated forms of DMSO has been monitored by one and two dimensional NMR techniques at 500 MHz. The temperature coefficients of the amide proton chemical shifts in conjunction with the observed NOESY spectra suggest that melanostatin in neutral form in DMSO adopts a backbone conformation such that leucine amide proton is buried by the proline ring and the side chain of leucine. Similar observation is made for protonated form of melanostatin in DMSO. The results of the present study are at variance with the earlier NMR studies which proposed a beta-turn structure for both the forms of melanostatin. There is, however, no evidence for the presence of beta-turn structure for both the forms of melanostatin in DMSO. In CDCl3 also Leu NH appears to be buried as evident from the solvent titration with DMSO and NOESY spectra.  相似文献   

18.
We show for the first time that the secondary structure of the Alzheimer beta-peptide is in a temperature-dependent equilibrium between an extended left-handed 3(1) helix and a flexible random coil conformation. Circular dichroism spectra, recorded at 0.03 mM peptide concentration, show that the equilibrium is shifted towards increasing left-handed 3(1) helix structure towards lower temperatures. High resolution nuclear magnetic resonance (NMR) spectroscopy has been used to study the Alzheimer peptide fragment Abeta(12-28) in aqueous solution at 0 degrees C and higher temperatures. NMR translation diffusion measurements show that the observed peptide is in monomeric form. The chemical shift dispersion of the amide protons increases towards lower temperatures, in agreement with the increased population of a well-ordered secondary structure. The solvent exchange rates of the amide protons at 0 degrees C and pH 4.5 vary within at least two orders of magnitude. The lowest exchange rates (0.03-0.04 min(-1)) imply that the corresponding amide protons may be involved in hydrogen bonding with neighboring side chains.  相似文献   

19.
Two toxins from the venom of Naja mossambica mossambica, neurotoxin I and cardiotoxin VII4, were investigated in aqueous solution by high-resolution 1H nuclear magnetic resonance (NMR) techniques at 360 MHz. The spectral characterization of the proteins included determination of the number of slowly exchanging amide protons which can be observed in 2H2O solution, measurement of the amide proton chemical shifts and exchange rates, characterization of the aromatic spin systems and the internal mobilities of aromatic rings, and studies of the pH dependence of the NMR spectra. For numerous resonances of labile and non-labile protons quite outstanding pH titration shifts were observed. It is suggested that these NMR parameters provide a useful basis for comparative structural studies of different proteins in the large group of homologous snake toxins. As a first application the NMR data presently available in the literature on neurotoxin II from Naja naja oxiana, toxin alpha from Naja nigricollis and erabutoxin a and b from Laticauda semifasciata have been used to compare these three proteins with neurotoxin I from Naja mossambica mossambica. This preliminary comparative study provides evidence that the same type of spatial structure prevails for these four homologous neurotoxins and that the folding of the backbone corresponds quite closely to that observed in the crystal structure of erabutoxin b. A second application is the comparison of cardiotoxin VII4 from Naja mossambica mossambica with the neurotoxins. The experimental data indicate that the folding of the polypeptide backbone is closely similar, but that the cardiotoxin molecule is markedly more flexible than the neurotoxins.  相似文献   

20.
Summary Temperature coefficients are widely used as an indication of solvent accessibility to amide protons. Low temperature coefficients are related to low accessibility and are often interpreted as evidence for intramolecular hydrogen bonding. Conformational shifts, i.e. the difference between chemical shifts of a particular residue in a structured and in a random-coil conformation, provide information on secondary structure. In particular, negative CHα conformational shifts are often used to delineate the extent of helical stretches. NH conformational shifts show large oscillations within a helix that have been interpreted as the result of helix distortions affecting hydrogen bond lengths. In the ocurse of the study of differnet peptides that adopt a helical structure in the presence of the structure-inducing solvent hexafluoroisopropanol (HFIP), we have found a strong correlation between temperature coefficients and amide conformational shifts. However, contrary to the initial expectations, lower temperature coefficients were associated to amide protons involved in longer, and presumably weaker, hydrogen bonds. The correlation can be explained, however, assuming that, in helical peptides dissolved in HFIP, temperature affects the chemical shift of amide protons mainly by changing the average length of intramolecular hydrogen bonds and changes in solvent accessibility play only a secondary role under these experimental conditions. The pattern of temperature coefficients in helical peptides can therefore be used to identify short or long hydragen bonds causing bending of the helix axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号