首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective hydrolysis of phosphatidylcholine species, which are selectively radioactively labelled in vivo, does not appear to interfere with a radiochemical assay for hydrolysis of microsomal phosphatidylcholine by C-type phospholipases from Bacillus cereus or Clostridium perfringens. Both phospholipases substantially hydrolysed phosphatidylcholine over the pH range 4.0-10.0.  相似文献   

2.
蛋白激酶C研究的最新进展   总被引:9,自引:1,他引:8  
作为能使蛋白激酶C(PKC)活化的第二信使甘油二酯(DAG)不仅可由磷脂酰肌醇(PtdIns)水解产生,大量实验表明还可从磷脂酰胆碱(PC)水解而来,其中磷脂酶C(PLC)及磷脂酶D(PLD)参与了这一过程,磷脂酶A2(PLA2)的作用产物脂肪酸(FA)也能激活PKC.PKC至少有10种亚型,依据其活化方式可分三大类:典型PKC,新PKC和非典型PKC.PKC参与了基因表达的调控.  相似文献   

3.
We examined the action of porcine pancreatic and bee-venom phospholipase A2 towards bilayers of phosphatidylcholine as a function of several physical characteristics of the lipid-water interface. 1. Unsonicated liposomes of dimyristoyl phosphatidylcholine are degraded by both phospholipases in the temperature region of the phase transition only (cf. Op den Kamp et al. (1974) Biochim. Biophys. Acta 345, 253--256 and Op den Kamp et al. (1975) Biochim. Biophys. Acta 406, 169--177). With sonicates the temperature range in which hydrolysis occurs is much wider. This discrepancy between liposomes and sonicates cannot be ascribed entirely to differences in available substrate surface. 2. Below the phase-transition temperature the phospholipases degrade dimyristoyl phosphatidylcholine single-bilayer vesicles with a strongly curved surface much more effectively than larger single-bilayer vesicles with a relatively low degree of curvature. 3. Vesicles composed of egg phosphatidylcholine can be degraded by pancreatic phospholipase A2 at 37 degrees C, provided that the substrate bilayer is strongly curved. The bee-venom enzyme shows a similar, but less pronounced, preference for small substrate vesicles. 4. In a limited temperature region just above the transition temperature of the substrate the action of both phospholipases initially proceeds with a gradually increasing velocity. This stimulation is presumably due to an increase of the transition temperature, effectuated by the products of the phospholipase action. 5. Structural defects in the substrate bilayer, introduced by sonication below the phase-transition temperature (cf. Lawaczeck et al. (1976) Biochim. Biophys. Acta 443, 313--330) facilitate the action of both phospholipases. The results lead to the general conclusion that structural irregularities in the packing of the substrate molecules facilitate the action of phospholipases A2 on phosphatidylcholine bilayers. Within the phase transition and with bilayers containing structural defects these irregularities represent boundaries between separate lipid domains. The stimulatory effect of strong bilayer curvature can be ascribed to an overall perturbation of the lipid packing as well as to a change in the phase-transition temperature.  相似文献   

4.
The bee and cobra venom phospholipases A2 as well as partially acetylated cobra venom phospholipase A2 are studied for their effect on phospholipid composition of synaptosomes and their Mg2+- and Na+,K+-ATPase activity. It is established that these phospholipases induce the splitting of phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine, inhibition of the Na+,K+-ATPase activity and activation of Mg2+-ATPase. Bee venom phospholipase A2 is more effective than cobra venom phospholipase A2, the both phospholipases splitting phosphatidylethanolamine most intensively. The ATPase activity may be partially or completely restored by exogenic phosphatidylcholine and phosphatidylserine; exogenic phosphatidylethanolamine is not efficient in this respect.  相似文献   

5.
1. The highest surface pressure of phosphatidylcholine monolayers allowing penetration of delipidated serum albumin decreased in the order dibehenoyl>distearoyl>dipalmitoyl=dimyristoyl. This pressure was not related to the area occupied or to the space available between the phospholipid molecules at the interface. 2. Penetration of albumin into yeast phosphatidylcholine monolayers was increased by adding a small percentage of long-chain anions (phosphatidic acid, dicetylphosphoric acid) to the film but only when the protein was below its isoelectric point (i.e. positively charged). 3. Stearylamine added to phosphatidylcholine monolayers had no effect on albumin penetration even when the protein was oppositely charged to that of the phospholipid/water interface. 4. The results are discussed in relation to the activation of certain phospholipases by anionic amphipathic substances.  相似文献   

6.
There is much evidence that G-proteins transduce the signal from receptors for Ca2+-mobilizing agonists to the phospholipase C that catalyzes the hydrolysis of phosphoinositides. However, the specific G-proteins involved have not been identified. We have recently purified a 42 kDa protein from liver that activates phosphoinositide phospholipase C and cross-reacts with antisera to a peptide common to G-protein -subunits. It is proposed that this protein is the a-subunit of the G-protein that regulates the phospholipase in this tissue.Ca2+-mobilizing agonists and certain growth factors also promote the hydrolysis of phosphatidylcholine through the activation of phospholipases C and D in many cell types. This yields a larger amount of diacylglycerol for a longer time than does the hydrolysis of inositol phospholipids. Consequently phosphatidylcholine breakdown is probably a major factor in long-term regulation of protein kinase C. The functions of phosphatidic acid produced by phospholipase D are speculative, but there is evidence that it is a major source of diacylglycerol in many cell types. The regulation of phosphatidylcholine phospholipases is multiple and involves direct activation by G-proteins, and regulation by Ca2+ protein kinase C and perhaps growth factor receptor tyrosine kinases.  相似文献   

7.
1. Purified myelin was incubated with snake venom or phospholipase A in the presence of or absence of trypsin at 37 degrees C, pH7.4, for different times. 2. Analysis of the myelin pellet obtained after centrifugation of the myelin sample incubated with snake venom or phospholipase A alone showed conversion of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine into their corresponding lyso compounds. No significant loss of myelin protein was observed in these samples. 3. A marked digestion of basic proteins and proteolipid protein was observed from the myelin pellet when trypsin was present in the incubation mixture. 4. The digestion of basic protein and particularly of proteolipid from myelin suggest that phospholipases may make protein more exposed to proteolytic enzyme for its digestion. 5. The relevance of the co-operative effect of phospholipases and proteinases as a model system of the mechanism of myelin breakdown in degenerative brain diseases is discussed.  相似文献   

8.
A variety of pathogenic bacteria produce phospholipases C, and since the discovery in 1944 that a bacterial toxin (Clostridium perfringens alpha-toxin) possessed an enzymatic activity, there has been considerable interest in this class of proteins. Initial speculation that all phospholipases C would have lethal properties has not been substantiated. Most of the characterized enzymes fall into one of four groups of structurally related proteins: the zinc-metallophospholipases C, the sphingomyelinases, the phosphatidylinositol-hydrolyzing enzymes, and the pseudomonad phospholipases C. The zinc-metallophospholipases C have been most intensively studied, and lethal toxins within this group possess an additional domain. The toxic phospholipases C can interact with eukaryotic cell membranes and hydrolyze phosphatidylcholine and sphingomyelin, leading to cell lysis. However, measurement of the cytolytic potential or lethality of phospholipases C may not accurately indicate their roles in the pathogenesis of disease. Subcytolytic concentrations of phospholipase C can perturb host cells by activating the arachidonic acid cascade or protein kinase C. Nonlethal phospholipases C, such as the Listeria monocytogenes PLC-A, appear to enhance the release of the organism from the host cell phagosome. Since some phospholipases C play important roles in the pathogenesis of disease, they could form components of vaccines. A greater understanding of the modes of action and structure-function relationships of phospholipases C will facilitate the interpretation of studies in which these enzymes are used as membrane probes and will enhance the use of these proteins as models for eukaryotic phospholipases C.  相似文献   

9.
A variety of pathogenic bacteria produce phospholipases C, and since the discovery in 1944 that a bacterial toxin (Clostridium perfringens alpha-toxin) possessed an enzymatic activity, there has been considerable interest in this class of proteins. Initial speculation that all phospholipases C would have lethal properties has not been substantiated. Most of the characterized enzymes fall into one of four groups of structurally related proteins: the zinc-metallophospholipases C, the sphingomyelinases, the phosphatidylinositol-hydrolyzing enzymes, and the pseudomonad phospholipases C. The zinc-metallophospholipases C have been most intensively studied, and lethal toxins within this group possess an additional domain. The toxic phospholipases C can interact with eukaryotic cell membranes and hydrolyze phosphatidylcholine and sphingomyelin, leading to cell lysis. However, measurement of the cytolytic potential or lethality of phospholipases C may not accurately indicate their roles in the pathogenesis of disease. Subcytolytic concentrations of phospholipase C can perturb host cells by activating the arachidonic acid cascade or protein kinase C. Nonlethal phospholipases C, such as the Listeria monocytogenes PLC-A, appear to enhance the release of the organism from the host cell phagosome. Since some phospholipases C play important roles in the pathogenesis of disease, they could form components of vaccines. A greater understanding of the modes of action and structure-function relationships of phospholipases C will facilitate the interpretation of studies in which these enzymes are used as membrane probes and will enhance the use of these proteins as models for eukaryotic phospholipases C.  相似文献   

10.
The phospholipase C-mediated hydrolysis of phosphatidylcholine has been shown recently to be activated by a number of agonists. Muscarinic receptors, which trigger various signal transduction mechanisms including inhibition of adenylate cyclase through Gi, have been shown to be potent stimulants of this novel phospholipid degradative pathway. We demonstrate here, by exogenous addition of Bacillus cereus phosphatidylcholine-hydrolyzing phospholipase C, that phosphatidylcholine breakdown mimics the ability of carbachol to inhibit adenylate cyclase. This effect is sensitive to pertussis toxin and is entirely dependent on the presence of protein kinase C. This kinase is also required for the inhibition by carbachol of adenylate cyclase. These results suggest that the activation of phosphatidylcholine breakdown by phospholipase C may play an important role linking or favoring the coupling muscarinic receptors to Gi. Results presented here also show that phospholipase C-mediated hydrolysis of phosphoinositides by exogenous addition of Bacillus thuringiensis phosphoinositide-hydrolyzing phospholipase C does not affect adenylate cyclase, despite the fact that protein kinase C is translocated to an extent similar to that produced by the hydrolysis of phosphatidylcholine. According to the results shown here, both phospholipases also differ in their ability to down-regulate protein kinase C as well as to phosphorylate p80 and to transmodulate the binding of epidermal growth factor, two well established effects of protein kinase C in Swiss 3T3 fibroblasts. This emphasizes the complexity, from a functional point of view, of protein kinase C activation "in vivo."  相似文献   

11.
Extracts of human fetal intestine contain factors that can stimulate or inhibit thymidine incorporation into fetal bovine erythroid cells. An inhibitory factor was purified to homogeneity by gel-permeation and reversed-phase high performance liquid chromatography. The inhibitory action was due to cell lysis. The first 25 amino acids of the N-terminal segment were identical to the human lung and pancreatic phospholipase A2. The isolated protein released arachidonic acid from 2-arachidonyl phosphatidylcholine. Porcine phospholipase A2 had the same effects as the intestinal protein, including its tissue-specific lysis of fetal bovine liver erythroid cells. No decrease of thymidine incorporation was seen in fetal bovine intestinal cells, 3T3 cells, or K562 cells incubated with the porcine enzyme. No release of hemoglobin or cell lysis was observed with human erythrocytes or fetal bovine erythrocytes. Porcine and bee phospholipases, which have low sequence homology, are nearly equipotent in inhibiting thymidine incorporation, whereas melittin and beta-bungarotoxin were less active than the pancreatic enzyme. These results support the tissue-specific effects observed with other phospholipases A2. The high sensitivity of liver erythroid cells towards some phospholipases A2 suggest that these enzymes may be involved in the elimination of hepatic erythroid cells at the end of gestation.  相似文献   

12.
Methylcholanthrene-transformed mouse fibroblasts synthesize prostaglandins in response to bradykinin, thrombin, serum, and the ionophore A23187. These agents activate phospholipases, thereby releasing fatty acids from phospholipids. To examine the phospholipid specificity of the phospholipases activated by bradykinin, thrombin, serum, and A23187, cells were labeled with [14C]arachidonic acid and stimulated with these agents in the presence of delipidated bovine serum albumin. Phospholipid classes were resolved by two-dimensional chromatography on silica gel-coated paper. Only phosphatidylinositol and phosphatidylcholine lost radioactivity upon stimulation. To characterize the fatty acid specificity of the phospholipases, cells were incubated with 14C-labeled stearic, oleic, linoleic, eicosatrienoic, or arachidonic acid and then exposed to the stimuli. Bradykinin, thrombin, and serum caused specific release of radioactivity into the medium only from cells labeled with arachidonic acid or eicosatrienoic acid, whereas A23187 caused release from cells labeled with any one of the five fatty acids. We conclude that bradykinin, thrombin, and serum activate phospholipases that specifically hydrolyze arachidonyl and eicosatrienoyl phosphatidylinositol and phosphatidylcholine, whereas A23187 is less specific activator of phospholipases.  相似文献   

13.
Membrane-bound lipids of isolated guinea pig liver microsomal membranes were selectively enzymatically labelled with isomeric (5-, 12-, and 16-)doxyl stearic acid. After reisolation, the membranes were degraded with phospholipases D and C under conditions not requiring detergents or organic solvent activators. The degradation of membrane-bound lipids occurred according to the recognized specificity of phospholipases D and C. Temperature-induced changes of degraded membranes containing radioactive spin-labelled isomeric lipids were followed by the electron spin resonance and spectral changes correlated with the lipid composition of membranes. Discontinuities in plots of experimental spectral parameters versus temperature detected in the case of microsomal membranes before and after degradation with phospholipases D and C were attributed to lipid-protein and lipid-lipid interaction(s). On the basis of these and control experiments, discontinuity at around 10-12 degrees C was attributed to the microsomal membrane phosphatidylcholine intrinsic microsomal membrane protein interaction(s), while discontinuities detected at 19-21 degrees C approximately and at 20-30 degrees C approximately were attributed to the phase separation of Ca or Zn salts of membranous phosphatidic acid and to the similar phenomenon involving membrane-bound diglycerides respectively.  相似文献   

14.
Pancreatic porcine phospholipase A2 catalyzed hydrolysis of phosphatidylcholine in bile salt lecithin mixed micelles has been studied, utilizing a series of assay mixtures for which the micellar size, weight, and composition had been experimentally determined. Under these conditions the enzymatic hydrolysis is dependent on the phosphatidylcholine-to-sodium cholate molar ratio within the mixed micelle rather than the bulk concentration of the phospholipid in the mixture: at 5 mM phosphatidylcholine, variation of the NPC/NNaCh ratio from 0.2 to 2.0 increases the enzymatic activity from 82 to 933 mumol/min/mg protein. The initial rates are linear throughout the entire series of assay mixtures, the activity vs micellar concentration curves exhibit saturation behavior, and treatment of the data according to the "surface-as-cofactor" theory provides linear double-reciprocal plots which intersect in one point. The assay system should be applicable for detailed kinetic studies of lipolytic enzymes, including mammalian phospholipases which exhibit rather low activities toward lecithin-Triton X-100 mixed micelles. The system should also provide a convenient basis for mechanistic studies involving the use of inhibitory phospholipid substrate analogs.  相似文献   

15.
Partially reassembled high density lipoproteins (R-HDL) composed of apolipoprotein A-I and nonhydrolyzable analogues of phosphatidylcholine have been prepared, and their physical properties and reactivities as substrates for lecithin: cholesterol acyltransferase and three phospholipases were tested. The stereo-chemical pairs L-DMPC-ether (1,2-O-ditetradecyl-sn-glycero-3-phosphorylcholine) and D-DMPC-ether (2,3-O-ditetradecyl-sn-glycero-1-phosphoryline) or L-DMPC (1,2-dimyristoyl-sn-glycero-3-phosphoryl-choline) and D-DMPC (2,3-dimyristoyl-sn-glycero-1-phosphorylcholine) have similar thermal properties. R-HDL composed of these four lipids also have similar thermal properties as well as lipid/protein ratios, molecular weights, and protein conformations. Vmax and apparent Km values for lecithin: cholesterol acyltransferase on R-HDL consisting of linear combinations of L-DMPC and D-DMPC, L-DMPC-ether, or D-DMPC-ether plus 6 mol % cholesterol were measured. For the ether lecithins, there was a linear increase in Vmax with percentage of the acyl donor, L-DMPC, in R-HDL; over the same range, there was no change in Km. A comparison with bee venom and Naja melanoleuca phospholipase A2 demonstrated that the venom enzymes have turnover numbers almost 3 orders of magnitude greater than has lecithin:cholesterol acyltransferase; the activity of the phospholipases was profoundly affected by the physical state of the lipid, whereas lecithin: cholesterol acyltransferase activity was not. The differences between these two types of enzymes, which cleave the same bonds of a phosphatidylcholine, are assigned to different catalytic mechanisms. These studies show that R-HDL containing sn-glycero-3-phosphorylcholines and sn-glycero-3-phosphorylcholine ethers have similar structure, properties, and affinities for phospholipolytic enzymes.  相似文献   

16.
The in vivo effect of external electrostatic field (200 kV/m for 1 h) on the activity of type A phospholipases and lysophospholipases of erythrocyte and mitochondrial membranes was studied. The electrostatic field exposure activated membrane-associated deacylation of phosphatidylcholine fraction in erythrocyte membranes.  相似文献   

17.
Exposure of fetal type II pneumocytes to phospholipase A2 inhibitors led to significantly reduced choline uptake and decreased synthesis of total and disaturated phosphatidylcholines from both [methyl-14C]choline and [9,10(n)-3H]palmitate precursors. The percentage of the total synthesized phosphatidylcholine recovered as disaturated phosphatidylcholine was increased when compared to that in control cultures, suggesting that unsaturated phosphatidylcholine synthesis was reduced to a greater extent than that of the disaturated species. Synthesis of sphingomyelin and phosphatidylethanolamine from labeled palmitate was also reduced, whereas that of phosphatidylinositol and phosphatidylglycerol was significantly increased. Addition of phospholipase C resulted in increased synthesis of phosphatidylcholine from both labeled precursors; no significant changes were found in synthesis of most of the other 3H-labeled lipids. Added phospholipase A2 did not lead to any changes in either choline or palmitate incorporation. However, when melittin (a phospholipase A2 activator) was added to the cultures, greater incorporation of both palmitate and choline was observed, along with a significant increase in the percentage of total cellular radioactivity in 14C-labeled lipids, indicating also stimulation of phosphatidylcholine synthesis. A marked increase in CTP: phosphorylcholine cytidylyltransferase activity was found after treatment of the cultures with phospholipase C. Exposure to quinacrine also increased the activity of this enzyme. Addition of phospholipase C and melittin to prelabeled pneumocyte cultures accelerated degradation of cell phospholipids and the release of free fatty acids as the main degradation products. These findings suggest that intracellular phospholipases are regulators of synthesis of surfactant phospholipids in fetal type II pneumocytes, and that activation or inhibition of these phospholipases could represent a mechanism through which hormones and pharmacological agents modify surfactant and other phospholipid synthesis.  相似文献   

18.
Phospholipases A1 and A2 catalyze the hydrolysis of acyl groups of phospholipids at C-1 and C-2, respectively. These phospholipases are important in phospholipid catabolism and the remodeling of the acyl groups of phospholipids. Phospholipase A from hamster heart cytosol was purified by a combination of ion-exchange and gel filtration chromatography. The purity of the enzyme was assessed by nondenaturing polyacrylamide gel electrophoresis, two-dimension polyacrylamide gel electrophoresis, and immunological studies. The purified enzyme exhibited both phospholipase A1 and A2 activities toward phosphatidylcholine and had the ability to hydrolyze the acyl groups of phosphatidylethanolamine. However, the enzyme was not active toward lysophosphatidylcholine, diacylglycerol, or triacylglycerol. By Sepharose 6B chromatography, the molecular weight of the purified enzyme was estimated to be 140,000. Analysis of the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the enzyme was composed of identical Mr 14,000 subunits. At least six subunits in the native enzyme could be cross-linked by dimethyl suberimidate. Both phospholipase A1 and A2 activities showed similar pH profiles, exhibited no absolute requirements for divalent metallic cations, but displayed a high degree of specificity for the acyl groups of phosphatidylcholine at both C-1 and C-2. The Km of phospholipases A1 and A2 for 1-palmitoyl-2-arachidon-ylglycerophosphocholine was found to be identical (0.5 mM).  相似文献   

19.
Activities of phospholipases C and D along with A2 were followed on egg phosphatidylcholine small unilamellar vesicles in the presence of membrane active peptides melittin, gramicidin S and alamethicin. Decrease in the activity of phospholipase C and D and enhancement of phospholipases A2 activity suggest that these enzymes are sensitive to alterations in the lipid packing in the membranes in the presence of these peptides. Phospholipase C and D, which have not been used to study peptide--membrane interactions, have potential use in studying membrane perturbations, since their activities are very sensitive to lipid packing.  相似文献   

20.
Z Qian  L R Drewes 《FASEB journal》1991,5(3):315-319
Because receptors, G proteins, and phospholipases all exist within a membrane lipid environment, it is not unreasonable to assume that an enzyme capable of changing the lipid environment can affect the coupling relationship among these signal transducing components. Our previous study showed that a muscarinic acetylcholine receptor regulates phosphatidylcholine phospholipase D via a G protein in brain. We demonstrate here that phosphatidylinositol phospholipase C and phosphatidylcholine phospholipase D are simultaneously activated within 15 s by muscarine in the presence of 1 microM GTP gamma S. More important, inhibition of phospholipase D by zinc attenuated carbamylcholine-induced activation of phospholipase C by 30%. Our additional evidence strongly indicates that the receptor-regulated phospholipase D plays an important modulatory role in agonist-stimulated phosphatidylinositol breakdown. This modulatory effect may be achieved by changing the membrane microenvironment in which phospholipase C and phosphoinositol lipids reside, consequently amplifying the inositol phospholipid signaling process. Our results lead us to postulate that the potential interaction between two different signaling pathways may provide a cell with intracellular coordination and enable the cell to achieve functional responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号