首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The arginine deiminase system was found to function in protecting bacterial cells against the damaging effects of acid environments. For example, as little as 2.9 mM arginine added to acidified suspensions of Streptococcus sanguis at a pH of 4.0 resulted in ammonia production and protection against killing. The arginine deiminase system was found to have unusual acid tolerance in a variety of lactic acid bacteria. For example, for Streptococcus rattus FA-1, the pH at which arginolysis was reduced to 10% of the maximum was between 2.1 and 2.6, or more than 1 full pH unit below the minimum for glycolysis (pH 3.7), and more than 2 units below the minimum for growth in complex medium (pH 4.7). The acid tolerance of the arginine deiminase system appeared to be primarily molecular and to depend on the tolerance of individual enzymes rather than on the membrane physiology of the bacteria; pH profiles for the activities of arginine deiminase, ornithine carbamoyltransferase, and carbamate kinase in permeabilized cells showed that the enzymes were active at pHs of 3.1 or somewhat lower. Overall, it appeared that ammonia could be produced from arginine at low pH values, even by cells with damaged membranes, and that the ammonia could then protect the cells against acid damage until the environmental pH value rose sufficiently to allow for the reestablishment of a difference in pH (delta pH) across the cell membrane.  相似文献   

2.
3.
4.
Stationary-phase cells of Listeria monocytogenes grown in glucose-free or glucose-containing media were exposed for 90 min to various stresses, including acid stress (pH 4.0 to 7.0), osmotic stress (10.5 to 20.5% NaCl), and various temperatures (-5 to 50 degrees C), and were further exposed to pH 3.5. Exposure to a mildly acidic (pH 5.0 to 6.0) environment provided protection of the pathogen against acid upon subsequent exposure. This adaptive response, however, was found to be strongly dependent on other environmental conditions during the shock, such as temperature or the simultaneous presence of a second stress factor (NaCl). Growth of L. monocytogenes in the presence of glucose resulted in enhanced survival of the pathogen at pH 3.5. Sublethal stresses other than acidic stresses, i.e., osmotic, heat, and low-temperature stresses, did not affect the acid resistance of L. monocytogenes (P > 0.5). More-severe levels of these stresses, however, resulted in sensitization of the pathogen to acid.  相似文献   

5.
6.
7.
The acid tolerance of a Listeria monocytogenes serotype 4b strain was studied by measuring its ability to survive at an acidic pH at 37 degrees C. The acid tolerance of L. monocytogenes was much lower than those of Escherichia coli O157:H7 and Shigella flexneri strains. This observation suggested a higher infective dose for L. monocytogenes than E. coli O157:H7 and Shigella. The susceptibility of L. monocytogenes to acidic pH was dependent upon growth medium pH and growth phase of the culture. Nisin and some other ionophores reduced the acid tolerance of both stationary-phase and log-phase cultures of L. monocytogenes. These studies indicated that nisin might be a useful candidate for controlling acid tolerance of L. monocytogenes.  相似文献   

8.
9.
The success of Listeria monocytogenes as a food-borne pathogen owes much to its ability to survive a variety of stresses, both in the external environment prior to ingestion and subsequently within the animal host. Growth at high salt concentrations and low temperatures is attributed mainly to the accumulation of organic solutes such as glycine betaine and carnitine. We utilized a novel system for generating chromosomal mutations (based on a lactococcal pWVO1-derived Ori(+) RepA(-) vector, pORI19) to identify a listerial OpuC homologue. Mutating the operon in two strains of L. monocytogenes revealed significant strain variation in the observed activity of OpuC. Radiolabeled osmolyte uptake studies, together with growth experiments in defined media, linked OpuC to carnitine and glycine betaine uptake in Listeria. We also investigated the role of OpuC in contributing to the growth and survival of Listeria in an animal (murine) model of infection. Altering OpuC resulted in a significant reduction in the ability of Listeria to colonize the upper small intestine and cause subsequent systemic infection following peroral inoculation.  相似文献   

10.
11.
12.
A lack on the association between acid tolerance response (ATR) and osmotolerance response (OTR) among Listeria monocytogenes dairy isolates was found. In order to evaluate how wild L. monocytogenes isolates mount tolerance responses under a sub-lethal pH and a low sodium chloride concentration (pH 5.5 and 3.5 % [w/v] NaCl), a proteomic approach was used. The ATR and OTR of two L. monocytogenes cheese dairy isolates (strain T8, serotype 4b and A9, serotype 1/2b or 3b) were determined. The proteomes of the adapted and non-adapted cultures were evaluated by 2-DE. One strain displayed an ATR, but not an OTR and the other displayed an OTR, but not an ATR. The ATR positive strain showed the over-production of proteins related with protein synthesis, protein folding, attainment of reduction power, ribose production and cell wall. In contrast, in the OTR-positive-strain proteins related with glycolysis, general stress and detoxification were identified.  相似文献   

13.
14.
Listeria monocytogenes is an opportunistic bacterial pathogen of man and animals that has the capacity to survive under extreme environmental conditions. While our knowledge on L. monocytogenes and its ability to sustain within wide pH and temperature ranges and salt concentrations has been largely built on the virulent strains of this species, relatively little is known about avirulent strains in this regard. In this study, we extend our analysis on avirulent L. monocytogenes strains. By subjecting three virulent (EGD, 874 and ATCC 19196) and three avirulent (ATCC 19114, HCC23 and HCC25) strains to various pH and salt concentrations, it was found that L. monocytogenes recovered well after treatment with 100 mM Tris at pH 12.0, and to a lesser extent at pH 3.0. Interestingly, avirulent L. monocytogenes strains showed a somewhat higher tolerance to alkali than virulent strains. This unique feature of avirulent L. monocytogenes strains may potentially be exploited for the development of a rapid technique for differentiation between avirulent and virulent strains. Furthermore, all L. monocytogenes strains tested were resistant to saturated NaCl (about 7 M, or 40% w/v) for a long period of time (20 h and possibly longer). Together, these results highlight that acid, alkali, and/or salt treatments commonly used in food product processing may not be sufficient to eliminate L. monocytogenes, and therefore stringent quality control measures at the beginning and end of the food manufacturing process is essential to ensure that such food products are free of listerial contamination.  相似文献   

15.
This study examined the bioenergetics of Listeria monocytogenes, induced to an acid tolerance response (ATR). Changes in bioenergetic parameters were consistent with the increased resistance of ATR-induced (ATR(+)) cells to the antimicrobial peptide nisin. These changes may also explain the increased resistance of L. monocytogenes to other lethal factors. ATR(+) cells had lower transmembrane pH (DeltapH) and electric potential (Deltapsi) than the control (ATR(-)) cells. The decreased proton motive force (PMF) of ATR(+) cells increased their resistance to nisin, the action of which is enhanced by energized membranes. Paradoxically, the intracellular ATP levels of the PMF-depleted ATR(+) cells were approximately 7-fold higher than those in ATR(-) cells. This suggested a role for the F(o)F(1) ATPase enzyme complex, which converts the energy of ATP hydrolysis to PMF. Inhibition of the F(o)F(1) ATPase enzyme complex by N'-N'-1,3-dicyclohexylcarbodiimide increased ATP levels in ATR(-) but not in ATR(+) cells, where ATPase activity was already low. Spectrometric analyses (surface-enhanced laser desorption ionization-time of flight mass spectrometry) suggested that in ATR(+) listeriae, the downregulation of the proton-translocating c subunit of the F(o)F(1) ATPase was responsible for the decreased ATPase activity, thereby sparing vital ATP. These data suggest that regulation of F(o)F(1) ATPase plays an important role in the acid tolerance response of L. monocytogenes and in its induced resistance to nisin.  相似文献   

16.
Intracellular accumulation of the amino acid proline has previously been linked to the salt tolerance and virulence potential of a number of bacteria. Taking advantage of the proBA mutant Escherichia coli CSH26, we identified a listerial proBA operon coding for enzymes functionally similar to the glutamyl kinase (GK) and glutamylphosphate reductase (GPR) enzyme complex which catalyzes the first and second steps of proline biosynthesis in E. coli. The first gene of the operon, proB, is predicted to encode GK, a 276-residue protein with a calculated molecular mass of 30.03 kDa and pl of 5.2. Distal to the promoter and overlapping the 3' end of proB by 17 bp is proA, which encodes GPR, a 415-residue protein with a calculated molecular mass of 45.50 kDa (pl 5.3). Using this information, we created a chromosomal deletion mutant by allelic exchange which is auxotrophic for proline. This mutant was used to assess the contribution of proline anabolism to osmotolerance and virulence. While inactivation of proBA had no significant effect on virulence in mouse assays (either perorally or intraperitoneally), growth at low (2 to 4% NaCl) and high (>6% NaCl) salt concentrations in complex media was significantly reduced in the absence of efficient proline synthesis. We conclude that while proline biosynthesis plays little, if any, role in the intracellular life cycle and infectious nature of Listeria monocytogenes, it can play an important role in survival in osmolyte-depleted environments of elevated osmolarity.  相似文献   

17.
18.
19.
Small trans-encoded RNAs (sRNAs) modulate the translation and decay of mRNAs in bacteria. In Gram-negative species, antisense regulation by trans-encoded sRNAs relies on the Sm-like protein Hfq. In contrast to this, Hfq is dispensable for sRNA-mediated riboregulation in the Gram-positive species studied thus far. Here, we provide evidence for Hfq-dependent translational repression in the Gram-positive human pathogen Listeria monocytogenes, which is known to encode at least 50 sRNAs. We show that the Hfq-binding sRNA LhrA controls the translation and degradation of its target mRNA by an antisense mechanism, and that Hfq facilitates the binding of LhrA to its target. The work presented here provides the first experimental evidence for Hfq-dependent riboregulation in a Gram-positive bacterium. Our findings indicate that modulation of translation by trans-encoded sRNAs may occur by both Hfq-dependent and -independent mechanisms, thus adding another layer of complexity to sRNA-mediated riboregulation in Gram-positive species.  相似文献   

20.
Arginine is an important metabolite in the normal function of several biological systems, and arginine deprivation has been investigated in animal models and human clinical trials for its effects on inhibition of tumor growth, angiogenesis, or nitric oxide synthesis. In order to design an optimal arginine-catabolizing enzyme bioconjugate, a novel recombinant arginine deiminase (ADI) from Mycoplasma arthritidis was prepared, and multi-PEGylated derivatives were examined for enzymatic and biochemical properties in vitro, as well as pharmacokinetic and pharmacodynamic behavior in rats and mice. ADI bioconjugates constructed with 12 kDa or 20 kDa monomethoxy-poly(ethylene glycol) polymers with linear succinimidyl carbonate linkers were investigated via intravenous, intramuscular, or subcutaneous administration in rodents. The selected PEG-ADI compounds have 22 +/- 2 PEG strands per protein dimer, providing an additional molecular mass of about 0.2-0.5 x 10(6) Da and prolonging the plasma mean residence time of the enzyme over 30-fold in mice. Prolonged plasma arginine deprivation was demonstrated with each injection route for these bioconjugates. Pharmacokinetic analysis employed parallel measurement of enzyme activity in bioassays and enzyme assays and demonstrated a correlation with the pharmacodynamic analysis of plasma arginine concentrations. Either ADI bioconjugate depressed plasma arginine to undetectable levels for 10 days when administered intravenously at 5 IU per mouse, while the subcutaneous and intramuscular routes exhibited only slightly reduced potency. Both bioconjugates exhibited potent growth inhibition of several cultured tumor lines that are deficient in the anabolic enzyme, argininosuccinate synthetase. Investigations of structure-activity optimization for PEGylated ADI compounds revealed a benefit to constraining the PEG size and number of attachments to both conserve catabolic activity and streamline manufacturing of the experimental therapeutics. Specifically, ADI with either 12 kDa or 20 kDa PEG attachments on 33% of the primary amines retained about 60% or 48% of enzyme activity, respectively; the Km and pH profiles were nearly unchanged; IC50 values were diminished by less than 30%; while stability studies demonstrated full retention of activity at 4 degrees C for 5 months. A comparison of the enzymatic properties of a second ADI from Pseudomonas putida illustrated the superior characteristics of the M. arthritidis ADI enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号