首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Zhou N  Luo Z  Luo J  Hall JW  Huang Z 《Biochemistry》2000,39(13):3782-3787
The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus is unique among all known chemokines in that vMIP-II shows a broad-spectrum interaction with both CC and CXC chemokine receptors including CCR5 and CXCR4, two principal coreceptors for the cell entry of human immunodeficiency virus type 1 (HIV-1). To elucidate the mechanism of the promiscuous receptor interaction of vMIP-II, synthetic peptides derived from the N-terminus of vMIP-II were studied. In contrast to the full-length protein that recognizes both CXCR4 and CCR5, a peptide corresponding to residues 1-21 of vMIP-II (LGASWHRPDKCCLGYQKRPLP) was shown to strongly bind CXCR4, but not CCR5. The IC(50) of this peptide in competing with CXCR4 binding of (125)I-SDF-1alpha is 190 nM as compared to the IC(50) of 14.8 nM of native vMIP-II in the same assay. The peptide selectively prevented CXCR4 signal transduction and coreceptor function in mediating the entry of T- and dual-tropic HIV-1 isolates, but not those of CCR5. Further analysis of truncated peptide analogues revealed the importance of the first five residues for the activity with CXCR4. These results suggest that the N-terminus of vMIP-II is essential for its function via CXCR4. In addition, they reveal a possible mechanism for the distinctive interactions of vMIP-II with different chemokine receptors, a notion that may be further exploited to dissect the structural basis of its promiscuous biological function. Finally, the potent CXCR4 peptide antagonist shown here could serve as a lead for the development of new therapeutic agents for HIV infection and other immune system diseases.  相似文献   

2.
Stromal cell-derived factor 1 (SDF-1), a member of the CXC chemokine family, is the only chemokine to bind to the receptor CXCR4. This receptor is also a co-receptor for syncytia-inducing forms of HIV in CD4(+) cells. In addition, SDF-1 is responsible for attracting mature lymphocytes to the bone marrow and can therefore contribute to host versus graft rejection in bone marrow transplantation. Clearly, by manipulating SDF-1 activity, we could find a possible anti-viral AIDS treatment and aid in bone marrow transplantation. SDF-1 binds to CXCR4 primarily via the N terminus, which appears flexible in the recently determined three-dimensional structure of SDF-1. Strikingly, short N-terminal SDF-1 peptides have been shown to have significant SDF-1 activity. By using NMR, we have determined the major conformation of the N terminus of SDF-1 in a 17-mer (residues 1-17 of SDF-1) and a 9-mer dimer (residues 1-9 of SDF-1 linked by a disulfide bond at residue 9). Residues 5-8 and 11-14 form similar structures that can be characterized as a beta-turn of the beta-alphaR type. These structural motifs are likely to be interconverting with other states, but the major conformation may be important for recognition in receptor binding. These results suggest for the first time that there may be a link between structuring of short N-terminal chemokine peptides and their ability to activate their receptor. These studies will act as a starting point for synthesizing non-peptide analogs that act as CXCR4 antagonists.  相似文献   

3.
The human CXC chemokine receptor 4 (CXCR4) is a receptor for the chemokine stromal cell-derived factor (SDF-1alpha) and a co-receptor for the entry of specific strains of human immunodeficiency virus type I (HIV-1). CXCR4 is also recognized by an antagonistic chemokine, the viral macrophage inflammatory protein II (vMIP-II) encoded by human herpesvirus type VIII. SDF-1alpha or vMIP-II binding to CXCR4 can inhibit HIV-1 entry via this co-receptor. An approach combining protein structural modeling and site-directed mutagenesis was used to probe the structure-function relationship of CXCR4, and interactions with its ligands SDF-1alpha and vMIP-II and HIV-1 envelope protein gp120. Hypothetical three-dimensional structures were proposed by molecular modeling studies of the CXCR4.SDF-1alpha complex, which rationalize extensive biological information on the role of CXCR4 in its interactions with HIV-1 envelope protein gp120. With site-directed mutagenesis, we have identified that the amino acid residues Asp (D20A) and Tyr (Y21A) in the N-terminal domain and the residue Glu (E268A) in extracellular loop 3 (ECL3) are involved in ligand binding, whereas the mutation Y190A in extracellular loop 2 (ECL2) impairs the signaling mediated by SDF-1alpha. As an HIV-1 co-receptor, we found that the N-terminal domain, ECL2, and ECL3 of CXCR4 are involved in HIV-1 entry. These structural and mutational studies provide valuable information regarding the structural basis for CXCR4 activity in chemokine binding and HIV-1 viral entry, and could guide the design of novel targeted inhibitors.  相似文献   

4.
Luo Z  Fan X  Zhou N  Hiraoka M  Luo J  Kaji H  Huang Z 《Biochemistry》2000,39(44):13545-13550
The viral macrophage inflammatory protein II (vMIP-II) shows a broad spectrum interaction with both CC and CXC chemokine receptors including CCR5 and CXCR4, two principal coreceptors for the cellular entry of human immunodeficiency virus type 1 (HIV-1). Recently, we have shown that a synthetic peptide derived from the N-terminus of vMIP-II, designated as V1, is a potent antagonist of CXCR4 but not CCR5 [Zhou, N., et al. (2000) Biochemistry 39, 3782-3787]. In this study, we synthesized a series of new peptides derived from other regions of vMIP-II and characterized their binding activities with both CXCR4 and CCR5. The results provided further support for the notion that the N-terminus of vMIP-II is the major determinant for CXCR4 recognition and that vMIP-II probably interacts with other chemokine receptors such as CCR5 with different sequence and conformational determinants. To understand the structure-function relationship of V1 peptide, its solution conformation was studied using circular dichroism spectroscopy, which showed a random conformation similar to that of the corresponding N-terminus in native vMIP-II. In addition, we synthesized a series of mutant analogues of V1 containing alanine, glycine, or phenylalanine substitution at various positions. Residues Val-1, Arg-7, and Lys-9 of V1 peptide were found to be critical for receptor interaction, because single alanine replacement at these positions dramatically decreased peptide binding to CXCR4. In contrast, alanine or phenylalanine substitution at Cys-11 led to significant enhancement in peptide affinity for CXCR4. Finally, we showed that V1 peptide inhibits HIV-1 replication in CXCR4(+) T-cell lines. These studies provide new insights into the structure-function relationship of V1 peptide and demonstrate that this peptide may be a lead for the development of therapeutic agents.  相似文献   

5.
Tyrosine sulfation of the chemokine receptor CXCR4 enhances its interaction with the chemokine SDF-1alpha. Given similar post-translational modification of other receptors, including CCR5, CX3CR1 and CCR2b, tyrosine sulfation may be of universal importance in chemokine signaling. N-terminal domains from seven transmembrane chemokine receptors have been employed for structural studies of chemokine-receptor interactions, but never in the context of proper post-translational modifications known to affect function. A CXCR4 peptide modified at position 21 by expressed tyrosylprotein sulfotransferase-1 and unmodified peptide are both disordered in solution, but bind SDF-1alpha with low micromolar affinities. NMR and fluorescence polarization measurements showed that the CXCR4 peptide stabilizes dimeric SDF-1alpha, and that sulfotyrosine 21 binds a specific site on the chemokine that includes arginine 47. We conclude that the SDF-1alpha dimer preferentially interacts with receptor peptide, and residues beyond the extreme N-terminal region of CXCR4, including sulfotyrosine 21, make specific contacts with the chemokine ligand.  相似文献   

6.
The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus has unique biological activities in that it blocks the cell entry by several different human immunodeficiency virus type 1 (HIV-1) strains via chemokine receptors including CXCR4 and CCR5. In this paper, we report the solution structure of all-d-amino acid peptides derived from the N-terminus of vMIP-II, which have been shown to have strong CXCR4 binding activity and potently inhibit HIV-1 entry via CXCR4, by using long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments. Both of all-d-peptides vMIP-II (1-10) and vMIP-II (1-21), which are designated as DV3 and DV1, respectively, have higher CXCR4 binding ability than their l-peptide counterparts. They are partially structured in aqueous solution, displaying a turn-like structure over residues 5-8. The small temperature coefficients of His-6 amide proton for both peptides also suggest the formation of a small hydrophobic pocket centered on His-6. The structural features of DV3 are very similar to the reported solution structure of all-l-peptide vMIP-II (1-10) [M.P. Crump, E. Elisseeva, J. Gong, I. Clark-Lewis, B.D. Sykes, Structure/function of human herpesvirus-8 MIP-II (1-71) and the antagonist N-terminal segment (1-10), FEBS Lett. 489 (2001) 171], which is consistent with the notion that d- and l-enantiomeric peptides can adopt mirror image conformations. The NMR structures of the d-peptides provide a structural basis to understand their mechanism of action and design new peptidomimetic analogs to further explore the structure-activity relationship of d-peptide ligand binding to CXCR4.  相似文献   

7.
Lymphotactin is unique among chemokines in that it contains only two of four conserved cysteines and may possess a structure less constrained than other chemokines. The viral chemokine vMIP-II, which presumably has a structure similar to that of CC chemokines has been shown to inhibit many chemokine receptors, but its activity at GPR5/XCR1 has not been described. Interestingly, vMIP-II (but not vMIP-I) was found to be a potent antagonist of lymphotactin activity at GPR5/XCR1, extending the range of chemokine classes that this viral protein is known to inhibit to include the C class chemokine. In addition, we have extended previous analyses of GPR5/XCR1 expression and show that this receptor is expressed in leukocyte cells previously shown to be responsive to lymphotactin.  相似文献   

8.
The N-terminal portion of parathyroid hormone is critical for PTH-1 receptor (P1R) activation and has been postulated to be alpha-helical when bound to the receptor. We investigated whether substitution of the sterically hindered and helix-promoting amino acid alpha-aminoisobutyric acid (Aib) in N-terminal PTH oligopeptides would improve the capacity of the peptide to activate the P1R. Analysis of the effects of individual Aib substitutions at each position in [Ala(3,12),Gln(10),Har(11),Trp(14)]PTH(1-14)NH(2) ([M]PTH(1-14)) on cAMP-stimulating potency in HKRK-B28 cells revealed that Aib at most positions diminished potency; however, Aib at positions 1 and 3 enhanced potency. Thus [Aib(1,3),M]PTH(1-14) was approximately 100-fold more potent than [M]PTH(1-14) (EC(50) = 1.1 +/- 0.1 and 100 +/- 20 nm, respectively), approximately 100,000-fold more potent than native PTH(1-14), and 2-fold more potent than PTH(1-34). The shorter peptide, [Aib(1,3),M]PTH(1-11), was also fully efficacious and 1,000-fold more potent than [M]PTH(1-11) (EC(50) 4 +/- 1 nm versus 3 +/- 1 microm). In cAMP stimulation assays performed in COS-7 cells expressing P1R-delNt, a receptor that lacks most of the N-terminal extracellular domain, [Aib(1,3),M]PTH(1-14) was 50-fold more potent than [M]PTH(1-14) (EC(50) = 0.7 +/- 0.2 versus 40 +/- 2 nm) and 1,000-fold more potent than PTH(1-34) (EC(50) = 700 nm). [Aib(1,3),M]PTH(1-14), but not PTH(1-34), inhibited the binding of (125)I-[Aib(1,3),Nle(8),Gln(10),Har(11),Ala(12),Trp(14),Arg(19),Tyr(21)]PTH(1-21)NH(2) to hP1R-delNt (IC(50) = 1,600 +/- 200 nm). The Aib(1,3) substitutions in otherwise unmodified PTH(1-34) enhanced potency and binding affinity on hP1R-delNt, but they had no effect for this peptide on hP1R-WT. Circular dichroism spectroscopy demonstrated that the Aib-1,3 substitutions increased helicity in all peptides tested, including PTH(1-34). The overall data thus suggest that the N-terminal residues of PTH are intrinsically disordered but become conformationally constrained, possibly as an alpha-helix, upon interaction with the activation domain of the PTH-1 receptor.  相似文献   

9.
Chemokines and their receptors play important roles in normal physiological functions and the pathogeneses of a wide range of human diseases, including the entry of human immunodeficiency virus type 1 (HIV-1). However, the use of natural chemokines to probe receptor biology or to develop therapeutic drugs is limited by their lack of selectivity and the poor understanding of mechanisms in ligand-receptor recognition. We addressed these issues by combining chemical and structural biology in research into molecular recognition and inhibitor design. Specifically, the concepts of chemical biology were used to develop synthetically and modularly modified (SMM) chemokines that are unnatural and yet have properties improved over those of natural chemokines in terms of receptor selectivity, affinity, and the ability to explore receptor functions. This was followed by using structural biology to determine the structural basis for synthetically perturbed ligand-receptor selectivity. As a proof-of-principle for this combined chemical and structural-biology approach, we report a novel D-amino acid-containing SMM-chemokine designed based on the natural chemokine called viral macrophage inflammatory protein II (vMIP-II). The incorporation of unnatural D-amino acids enhanced the affinity of this molecule for CXCR4 but significantly diminished that for CCR5 or CCR2, thus yielding much more selective recognition of CXCR4 than wild-type vMIP-II. This D-amino acid-containing chemokine also showed more potent and specific inhibitory activity against HIV-1 entry via CXCR4 than natural chemokines. Furthermore, the high-resolution crystal structure of this D-amino acid-containing chemokine and a molecular-modeling study of its complex with CXCR4 provided the structure-based mechanism for the selective interaction between the ligand and chemokine receptors and the potent anti-HIV activity of D-amino acid-containing chemokines.  相似文献   

10.
Croy JE  Brandon T  Komives EA 《Biochemistry》2004,43(23):7328-7335
LRP1 is a cell surface receptor responsible for clearing some 30 known ligands. We have previously shown that each of the three complete LDL receptor-homology domains of the LRP1 extracellular domain (sLRPs) binds apoE-enriched beta-VLDL particles. Here we show that two peptides from the N-terminal receptor binding domain of apoE, which are known to elicit a number of different cellular responses, bind to LRP1. Solution binding assays show that the two peptides, apoE(130-149) and apoE(141-155)(2), interact with each of the sLRPs (2, 3, and 4). Each peptide was found to exhibit the same solution binding characteristics as apoE-enriched beta-VLDL particles. Surface plasmon resonance analyses of the sLRP-apoE peptide interaction show that both peptides bind the sLRPs with K(D) values in the 100 nM range, a value similar to the effective concentration required for observation of the cellular responses. Consistent with results from mutagenesis studies of binding of apoE to LDLR, apoE(130-149,Arg142Glu) bound with a K(D) similar to that of the wild-type sequence, while apoE(130-149,Lys143Glu) showed a 10-fold decrease in K(D). Each of the peptides bound heparin, and heparin competed for sLRP binding.  相似文献   

11.
Human herpesvirus-8 (HHV-8) is the infectious agent responsible for Kaposi's sarcoma and encodes a protein, macrophage inflammatory protein-II (vMIP-II), which shows sequence similarity to the human CC chemokines. vMIP-II has broad receptor specificity that crosses chemokine receptor subfamilies, and inhibits HIV-1 viral entry mediated by numerous chemokine receptors. In this study, the solution structure of chemically synthesized vMIP-II was determined by nuclear magnetic resonance. The protein is a monomer and possesses the chemokine fold consisting of a flexible N-terminus, three antiparallel beta strands, and a C-terminal alpha helix. Except for the N-terminal residues (residues 1-13) and the last two C-terminal residues (residues 73-74), the structure of vMIP-II is well-defined, exhibiting average rmsd of 0.35 and 0.90 A for the backbone heavy atoms and all heavy atoms of residues 14-72, respectively. Taking into account the sequence differences between the various CC chemokines and comparing their three-dimensional structures allows us to implicate residues that influence the quaternary structure and receptor binding and activation of these proteins in solution. The analysis of the sequence and three-dimensional structure of vMIP-II indicates the presence of epitopes involved in binding two receptors CCR2 and CCR5. We propose that vMIP-II was initially specific for CCR5 and acquired receptor-binding properties to CCR2 and other chemokine receptors.  相似文献   

12.
Herpesvirus-8 macrophage inflammatory protein-II (vMIP-II) binds a uniquely wide spectrum of chemokine receptors. We report the X-ray structure of vMIP-II determined to 2.1 A resolution. Like RANTES, vMIP-II crystallizes as a dimer and displays the conventional chemokine tertiary fold. We have compared the surface topology and electrostatic potential of vMIP-II to those of eotaxin-1, RANTES, and MCP-3, three CCR3 physiological agonists with known three-dimensional structures. Surface epitopes identified on RANTES to be involved in binding to CCR3 are mimicked on the eotaxin-1 and MCP-3 surface. However, the surface topology of vMIP-II in these regions is markedly different. The results presented here indicate that the structural basis for interaction with the chemokine receptor CCR3 by vMIP-II is different from that for the physiological agonists eotaxin-1, RANTES, and MCP-3. These differences on vMIP-II may be a consequence of its broad-range receptor recognition capabilities.  相似文献   

13.
Chemokine receptors CCR5 and CXCR4 are the primary fusion coreceptors utilized for CD4-mediated entry by macrophage (M)- and T-cell line (T)-tropic human immunodeficiency virus type 1 (HIV-1) strains, respectively. Here we demonstrate that HIV-1 Tat protein, a potent viral transactivator shown to be released as a soluble protein by infected cells, differentially induced CXCR4 and CCR5 expression in peripheral blood mononuclear cells. CCR3, a less frequently used coreceptor for certain M-tropic strains, was also induced. CXCR4 was induced on both lymphocytes and monocytes/macrophages, whereas CCR5 and CCR3 were induced on monocytes/macrophages but not on lymphocytes. The pattern of chemokine receptor induction by Tat was distinct from that by phytohemagglutinin. Moreover, Tat-induced CXCR4 and CCR5 expression was dose dependent. Monocytes/macrophages were more susceptible to Tat-mediated induction of CXCR4 and CCR5 than lymphocytes, and CCR5 was more readily induced than CXCR4. The concentrations of Tat effective in inducing CXCR4 and CCR5 expression were within the picomolar range and close to the range of extracellular Tat observed in sera from HIV-1-infected individuals. The induction of CCR5 and CXCR4 expression correlated with Tat-enhanced infectivity of M- and T-tropic viruses, respectively. Taken together, our results define a novel role for Tat in HIV-1 pathogenesis that promotes the infectivity of both M- and T-tropic HIV-1 strains in primary human leukocytes, notably in monocytes/macrophages.  相似文献   

14.
Molecular analysis of CCR5, the cardinal coreceptor for HIV-1 infection, has implicated the N-terminal extracellular domain (N-ter) and regions vicinal to the second extracellular loop (ECL2) in this activity. It was shown that residues in the N-ter are necessary for binding of the physiologic ligands, RANTES (CCL5) and MIP-1 alpha (CCL3). vMIP-II, encoded by the Kaposi's sarcoma-associated herpesvirus, is a high affinity CCR5 antagonist, but lacks efficacy as a coreceptor inhibitor. Therefore, we compared the mechanism for engagement by vMIP-II of CCR5 to its interaction with physiologic ligands. RANTES, MIP-1 alpha, and vMIP-II bound CCR5 at high affinity, but demonstrated partial cross-competition. Characterization of 15 CCR5 alanine scanning mutants of charged extracellular amino acids revealed that alteration of acidic residues in the distal N-ter abrogated binding of RANTES, MIP-1 alpha, and vMIP-II. Whereas mutation of residues in ECL2 of CCR5 dramatically reduced the binding of RANTES and MIP-1 alpha and their ability to induce signaling, interaction with vMIP-II was not altered by any mutation in the exoloops of the receptor. Paradoxically, monoclonal antibodies to N-ter epitopes did not block chemokine binding, but those mapped to ECL2 were effective inhibitors. A CCR5 chimera with the distal N-ter residues of CXCR2 bound MIP-1 alpha and vMIP-II with an affinity similar to that of the wild-type receptor. Engagement of CCR5 by vMIP-II, but not RANTES or MIP-1 alpha blocked the binding of monoclonal antibodies to the receptor, providing additional evidence for a distinct mechanism for viral chemokine binding. Analysis of the coreceptor activity of randomly generated mouse-human CCR5 chimeras implicated residues in ECL2 between H173 and V197 in this function. RANTES, but not vMIP-II blocked CCR5 M-tropic coreceptor activity in the fusion assay. The insensitivity of vMIP-II binding to mutations in ECL2 provides a potential rationale to its inefficiency as an antagonist of CCR5 coreceptor activity. These findings suggest that the molecular anatomy of CCR5 binding plays a critical role in antagonism of coreceptor activity.  相似文献   

15.
Chemokine receptor CXCR4 plays an important role in the immune system and the cellular entry of human immunodeficiency virus type 1 (HIV-1). To probe the stereospecificity of the CXCR4-ligand interface, d-amino acid peptides derived from natural chemokines, viral macrophage inflammatory protein II (vMIP-II) and stromal cell-derived factor-1alpha (SDF-1alpha), were synthesized and found to compete with (125)I-SDF-1alpha and monoclonal antibody 12G5 binding to CXCR4 with potency and selectivity comparable with or higher than their l-peptide counterparts. This was surprising because of the profoundly different side chain topologies between d- and l-enantiomers, which circular dichroism spectroscopy showed adopt mirror image conformations. Further direct binding experiments using d-peptide labeled with fluorescein (designated as FAM-DV1) demonstrated that d- and l-peptides shared similar or at least overlapping binding site(s) on the CXCR4 receptor. Structure-activity analyses of related peptide analogs of mixed chiralities or containing alanine replacements revealed specific residues at the N-terminal half of the peptides as key binding determinants. Acting as CXCR4 antagonists and with much higher biological stability than l-counterparts, the d-peptides showed significant activity in inhibiting the replication of CXCR4-dependent HIV-1 strains. These results show the remarkable stereochemical flexibility of the CXCR4-peptide interface. Further studies to understand the mechanism of this unusual feature of the CXCR4 binding surface might aid the development of novel CXCR4-binding molecules like the d-peptides that have high affinity and stability.  相似文献   

16.
Stromal-cell-derived factor-1 (SDF-1alpha) is an 8-kDa chemokine that is constitutively expressed in bone-marrow-derived stromal cells and has been identified as a ligand for the CXCR4 receptor. We produced the chemokine recombinantly as methionine-SDF-1alpha in Escherichia coli without the leader peptide sequence. The protein was denatured, refolded, and further purified by reversed-phase HPLC. SDF-1alpha was shown to be >95% pure as judged by SDS-PAGE. The final yield of purified and refolded SDF-1alpha was 1-2 mg per gram of wet cell paste. The refolded protein is a ligand for the CXCR4 receptor and has been used to block HIV-mediated cell fusion and downmodulates the CXCR4 receptor. Our ability to purify hundreds of milligrams of refolded protein allowed us to conduct detailed studies of the biophysical properties of the protein. We have used a combination of biophysical techniques to study the solution properties of SDF-1alpha. The average mass of SDF-1alpha, as determined by static light scattering, gave us the first indications that the chemokine may self-associate. Further investigation with sedimentation velocity ultracentrifugation confirmed the existence of two species. The measured s(20, W) values defined two masses corresponding to monomer and dimer. Finally, sedimentation equilibrium ultracentrifugation and dynamic light scattering yielded a composite value of 150 +/- 30 microM for the dimerization constant. We conclude that SDF-1alpha exists in a monomer-dimer equilibrium.  相似文献   

17.
The CC chemokine known as 6Ckine (SLC, Exodus-2, or TCA4) has been identified as a ligand for CCR7. Mouse 6Ckine has also been shown to signal through mouse CXCR3 and share some of the activities of IFN-gamma inducible protein 10 and monokine induced by IFN-gamma. Nonetheless, human 6Ckine has not been shown to bind CXCR3 receptor or have angiostatic activity. In this study, we report that human 6Ckine does not induce a calcium flux in either human CXCR3 or mouse CXCR3 transfected cells, although it is an equally potent agonist as mouse 6Ckine and human macrophage inflammatory protein-3beta in human CCR7 transfected cells. Mouse 6Ckine (but not human 6Ckine) is capable of competing with radiolabeled IFN-gamma inducible protein 10 for human CXCR3. In addition, radiolabeled human 6Ckine does not bind to either human CXCR3 or mouse CXCR3. Together these data suggest that human CC chemokine 6Ckine is not a ligand for the human or mouse CXC chemokine receptor CXCR3.  相似文献   

18.
We have previously found that a 14-amino acid residue-peptide, T140, inhibits infection of target cells by T cell line-tropic HIV-1 (X4-HIV-1) through its specific binding to a chemokine receptor, CXCR4. Here, the importance of an L-3-(2-naphthyl)alanine (Nal) residue at position 3 in T140 for high anti-HIV activity and inhibitory activity against Ca(2+) mobilization induced by stromal cell-derived factor (SDF)-1alpha-stimulation through CXCR4 has initially been shown by the synthesis and biological evaluation of several analogues, where Nal(3) is substituted by diverse aromatic amino acids. Next, the order of the N-terminal 3 residues (Arg(1)-Arg(2)-Nal(3)) has been proved to be important from the structure--activity relationship (SAR) study shuffling these residues. Based on these results, we have found 10-residue peptides possessing modest anti-HIV activity by systematic antiviral evaluation of a series of synthetic, shortened analogues of T140.  相似文献   

19.
Interleukin-8 (IL-8), a member of the chemokine superfamily, exists as both monomers and dimers, and mediates its function by binding to neutrophil CXCR1 and CXCR2 receptors that belong to the G protein-coupled receptor class. It is now well established that the monomer functions as a high-affinity ligand, but the binding affinity of the dimer remains controversial. The approximately 1000-fold difference between monomer-dimer equilibrium constant (microM) and receptor binding constant (nM) of IL-8 does not allow receptor-binding affinity measurements of the native IL-8 dimer. In this study, we overcame this roadblock by creating a "trapped" nondissociating dimer that contains a disulfide bond across the dimer interface at the 2-fold symmetry point. The NMR studies show that the structure of this trapped dimer is indistinguishable from the native dimer. The trapped dimer, compared to a trapped monomer, bound CXCR1 with approximately 70-fold and CXCR2 with approximately 20-fold lower affinities. Receptor binding involves two interactions, between the IL-8 N-loop and receptor N-domain residues, and between IL-8 N-terminal and receptor extracellular loop residues. In contrast to a trapped monomer that bound an isolated CXCR1 N-domain peptide with microM affinity, the trapped dimer failed to show any binding, indicating that dimerization predominantly perturbs the binding of only the N-loop residues. These results demonstrate that only the monomer is a high-affinity ligand for both receptors, and also provide a structural basis for the lower binding affinity of the dimer.  相似文献   

20.
We have synthesised the CXC chemokine receptor 4 (29-39) peptide, CXCR4[29-39]. This peptide is located in the N-terminal region of the receptor and is likely to be involved in the docking step of the receptor interaction with its natural ligand stromal cell-derived factor-1 chemokine, SDF-1. Preliminary experiments, performed in the presence of micellar detergents to model a membrane-like environment, show that the (1-17) segment of SDF-1 binds to CXCR4[29-39].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号