首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonuclease P (RNase P) is a catalytic ribonucleoprotein (RNP) essential for tRNA biosynthesis. In Escherichia coli, this RNP complex is composed of a catalytic RNA subunit, M1 RNA, and a protein cofactor, C5 protein. Using the sulfhydryl-specific reagent (1-oxyl-2,2,5, 5-tetramethyl-Delta3-pyrroline-3-methyl)methanethiosulfonate (MTSL), we have introduced a nitroxide spin label individually at six genetically engineered cysteine residues (i.e., positions 16, 21, 44, 54, 66, and 106) and the native cysteine residue (i.e., position 113) in C5 protein. The spin label covalently attached to any protein is sensitive to structural changes in its microenvironment. Therefore, we expected that if the spin label introduced at a particular position in C5 protein was present at the RNA-protein interface, the electron paramagnetic resonance (EPR) spectrum of the spin label would be altered upon binding of the spin-labeled C5 protein to M1 RNA. The EPR spectra observed with the various MTSL-modified mutant derivatives of C5 protein indicate that the spin label attached to the protein at positions 16, 44, 54, 66, and 113 is immobilized to varying degrees upon addition of M1 RNA but not in the presence of a catalytically inactive, deletion derivative of M1 RNA. In contrast, the spin label attached to position 21 displays an increased mobility upon binding to M1 RNA. The results from this EPR spectroscopy-based approach together with those from earlier studies identify residues in C5 protein which are proximal to M1 RNA in the RNase P holoenzyme complex.  相似文献   

2.
Box C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs. The crystal structure of the 15.5kD core protein from the primitive eukaryote Giardia lamblia is described here to a resolution of 1.8 ?. The Giardia 15.5kD protein exhibits the typical α-β-α sandwich fold exhibited by both archaeal L7Ae and eukaryotic 15.5kD proteins. Characteristic of eukaryotic homologues, the Giardia 15.5kD protein binds the K-turn motif but not the variant K-loop motif. The highly conserved residues of loop 9, critical for RNA binding, also exhibit conformations similar to those of the human 15.5kD protein when bound to the K-turn motif. However, comparative sequence analysis indicated a distinct evolutionary position between Archaea and Eukarya. Indeed, assessment of the Giardia 15.5kD protein in denaturing experiments demonstrated an intermediate stability in protein structure when compared with that of the eukaryotic mouse 15.5kD and archaeal Methanocaldococcus jannaschii L7Ae proteins. Most notable was the ability of the Giardia 15.5kD protein to assemble in vitro a catalytically active chimeric box C/D RNP utilizing the archaeal M. jannaschii Nop56/58 and fibrillarin core proteins. In contrast, a catalytically competent chimeric RNP could not be assembled using the mouse 15.5kD protein. Collectively, these analyses suggest that the G. lamblia 15.5kD protein occupies a unique position in the evolution of this box C/D RNP core protein retaining structural and functional features characteristic of both archaeal L7Ae and higher eukaryotic 15.5kD homologues.  相似文献   

3.
M1 RNA, the RNA subunit of ribonuclease P from Escherichia coli, can under certain conditions catalytically cleave precursors to tRNA in the absence of C5, the protein moiety of RNase P. M1 RNA itself is not cleaved during the reaction, nor does it form any covalent bonds with its substrate. Only magnesium and, to a lesser extent, manganese ions can function at the catalytic center of M1 RNA. Several other ions either inhibit the binding of magnesium ion at the active site or function as structural counterions. The reaction rate of cleavage of precursors to tRNAs by M1 RNA is enhanced in the presence of poly-(ethylene glycol) or 2-methyl-2,4-pentanediol. Many aspects of the reaction catalyzed by M1 RNA are compatible with a mechanism in which phosphodiester bond cleavage is mediated by metal ion.  相似文献   

4.
5.
6.
Group II self-splicing introns are phylogenetically diverse retroelements that are widely held to be the ancestors of spliceosomal introns and retrotransposons that insert into DNA. Folding of group II intron RNA is often guided by an intron-encoded protein to form a catalytically active ribonucleoprotein (RNP) complex that plays a key role in the activity of the intron. To date, possible structural differences between the intron RNP in its precursor and spliced forms remain unexplored. In this work, we have trapped the native Lactococcus lactis group II intron RNP complex in its precursor form, by deleting the adenosine nucleophile that initiates splicing. Sedimentation velocity, size-exclusion chromatography and cryo-electron microscopy provide the first glimpse of the intron RNP precursor as a large, loosely packed structure. The dimensions contrast with those of compact spliced introns, implying that the RNP undergoes a dramatic conformational change to achieve the catalytically active state.  相似文献   

7.
Ribonucleoprotein (RNP) cores with RNA-synthesizing activity were prepared in two fractions, M protein-free and M protein-associated, from detergent-treated influenza virus PR8 by centrifugation through a discontinuous triple gradient of cesium sulfate, glycerol, and NP-40. The M-free RNP was fractionated by phosphocellulose column chromatography into two major RNP forms, A and B, which differed in the content of P proteins, while the M-associated RNP gave only the low P-content Form-B RNP. Starting from the high P-content Form-A RNP, an RNA-P proteins complex virtually free from NP protein was isolated by cesium sulfate equilibrium centrifugation. The complex, containing only three P proteins (P1, P2, and P3), was still active in catalyzing RNA synthesis in vitro without addition of exogenous template, indicating that NP protein is not required for the catalysis of RNA synthesis. RNA synthesis by the isolated RNA-P proteins complex was dependent on either ApG or capped RNA primers, and required four ribonucleoside triphosphates as substrates. The RNA product in this reaction was hybridizable to viral RNA. A complex of one each of the three P proteins was separated from RNA by glycerol gradient centrifugation after ribonuclease treatment or cesium chloride equilibrium centrifugation.  相似文献   

8.
A nuclear carbohydrate-binding protein with a molecular mass of 67 kDa (CBP67), which is specific for glucose residues, was purified to essential homogeneity from rat liver nuclear extracts. This protein could also be isolated from nuclear ribonucleoprotein (RNP) complexes by extraction in the presence of 0.6 M or 2 M NaCl, but it was absent in polysomal RNP complex. The binding of the purified protein, which has an isoelectric point of 7.3, to glucose-containing glycoconjugates depends on the presence of Ca2+ and Mg2+. Using closed nuclear envelope vesicles as a system to study nuclear transport of RNA, it was shown that both entrapped polysomal mRNA and nuclear RNA precursors are readily exported from the vesicles in an ATP-dependent manner. The transport was unidirectional and strongly promoted by the poly(A) segment attached to these RNAs. In contrast, nuclear RNP complexes entrapped into the vesicles together with glucose-conjugated bovine serum albumin or nucleoplasmin, or bird nest glycoprotein, were not exported into the extravesicular space. However, transport of nuclear RNP complexes could be achieved in the presence of glucose or after co-addition of a glucose-recognizing lectin from Pellina semitubulosa. In Western blots, radioiodinated CBP67 binds to an 80-kDa polypeptide both in isolated rat liver nuclear envelopes and pore-complex laminae. From these results we postulate that CBP67 may direct nuclear RNP complexes to the nuclear pore.  相似文献   

9.
Archaeal dual-guide box C/D small nucleolar RNA-like RNAs (sRNAs) bind three core proteins in sequential order at both terminal box C/D and internal C'/D' motifs to assemble two ribonuclear protein (RNP) complexes active in guiding nucleotide methylation. Experiments have investigated the process of box C/D sRNP assembly and the resultant changes in sRNA structure or "remodeling" as a consequence of sRNP core protein binding. Hierarchical assembly of the Methanocaldococcus jannaschii sR8 box C/D sRNP is a temperature-dependent process with binding of L7 and Nop56/58 core proteins to the sRNA requiring elevated temperature to facilitate necessary RNA structural dynamics. Circular dichroism (CD) spectroscopy and RNA thermal denaturation revealed an increased order and stability of sRNA folded structure as a result of L7 binding. Subsequent binding of the Nop56/58 and fibrillarin core proteins to the L7-sRNA complex further remodeled sRNA structure. Assessment of sR8 guide region accessibility using complementary RNA oligonucleotide probes revealed significant changes in guide region structure during sRNP assembly. A second dual-guide box C/D sRNA from M. jannaschii, sR6, also exhibited RNA remodeling during temperature-dependent sRNP assembly, although core protein binding was affected by sR6's distinct folded structure. Interestingly, the sR6 sRNP followed an alternative assembly pathway, with both guide regions being continuously exposed during sRNP assembly. Further experiments using sR8 mutants possessing alternative guide regions demonstrated that sRNA folded structure induced by specific guide sequences impacted the sRNP assembly pathway. Nevertheless, assembled sRNPs were active for sRNA-guided methylation independent of the pathway followed. Thus, RNA remodeling appears to be a common and requisite feature of archaeal dual-guide box C/D sRNP assembly and formation of the mature sRNP can follow different assembly pathways in generating catalytically active complexes.  相似文献   

10.
Hsu AW  Kilani AF  Liou K  Lee J  Liu F 《Nucleic acids research》2000,28(16):3105-3116
RNase P from Escherichia coli is a tRNA-processing enzyme and consists of a catalytic RNA subunit (M1 RNA) and a protein component (C5 protein). M1GS, a gene-targeting ribozyme derived from M1, can cleave a herpes simplex virus 1 mRNA efficiently in vitro and inhibit its expression effectively in viral-infected cells. In this study, the effects of C5 on the interactions between a M1GS ribozyme and a model mRNA substrate were investigated by site-specific UV crosslink mapping. In the presence of the protein cofactor, the ribozyme regions crosslinked to the substrate sequence 3′ immediately to the cleavage site were similar to those found in the absence of C5. Meanwhile, some of the ribozyme regions (e.g. P12 and J11/12) that were crosslinked to the leader sequence 5′ immediately to the cleavage site in the presence of C5 were different from those regions (e.g. P3 and P4) found in the absence of the protein cofactor and were not among those that are believed to interact with a tRNA. Understanding how C5 affects the specific interactions between the ribozyme and its target mRNA may facilitate the development of gene-targeting ribozymes that function effectively in vivo, in the presence of cellular proteins.  相似文献   

11.
Smith JK  Hsieh J  Fierke CA 《Biopolymers》2007,87(5-6):329-338
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) complex that catalyzes the metal-dependent maturation of the 5' end of precursor tRNAs (pre-tRNAs) in all organisms. RNase P is comprised of a catalytic RNA (P RNA), and at least one essential protein (P protein). Although P RNA is the catalytic subunit of the enzyme and is active in the absence of P protein under high salt concentrations in vitro, the protein is still required for enzyme activity in vivo. Therefore, the function of the P protein and how it interacts with both P RNA and pre-tRNA have been the focus of much ongoing research. RNA-protein interactions in RNase P serve a number of critical roles in the RNP including stabilizing the structure, and enhancing the affinity for substrates and metal ions. This review examines the role of RNA-protein interactions in bacterial RNase P from both structural and mechanistic perspectives.  相似文献   

12.
13.
Rye embryo ribosomes were dissociated into subunits and the large subunit fraction was treated with formamide. A low molecular weight complex of RNA and protein (RNP) was released. Electrophoresis of the RNP in polyacrylamide gels containing sodium dodecyl sulphate yielded an RNA band and a single protein band. The protein had a molecular weight of approximately 41 000 and the RNA of the complex was shown to be 5S ribosomal RNA. Embryos were germinated in the presence of [32P]orthophosphate and the labelled RNP was isolated from their ribosomes. The RNA component was partially digested with pancreatic A ribonuclease and the parts protected from degradation by the protein were determined by sequence analysis. Although the whole 5S RNA molecule was shielded to some extent, the portion most protected was between nucleotides 68 and 108. This is, therefore, probably the part of plant cytosol 5S RNA which is primarily involved in the interaction with protein in the complex and possibly in the ribosome as well.  相似文献   

14.
The kinetic constants for cleavage of the tRNA(Tyr)Su3 precursor by the M1 RNA of E. coli RNase P were determined in the absence and presence of the C5 protein under single and multiple (steady state) turnover conditions. The rate constant of cleavage in the reaction catalyzed by M1 RNA alone was 5 times higher in single turnover than in multiple turnovers, suggesting that a rate-limiting step is product release. Cleavage by M1 RNA alone and by the holoenzyme under identical buffer conditions demonstrated that C5 facilitated product release. Addition of different product-like molecules under single turnover reaction conditions inhibited cleavage both in the absence and presence of C5. In the presence of C5, the Ki value for matured tRNA was approximately 20 times higher than in its absence, suggesting that C5 also reduces the interaction between the 5'-matured tRNA and the enzyme. In a growing cell the number of tRNA molecules is approximately 1000 times higher than the number of RNase P molecules. A 100-fold excess of matured tRNA over enzyme clearly inhibited cleavage in vitro. We discuss the possibility that RNase P is involved in the regulation of tRNA expression under certain growth conditions.  相似文献   

15.
Ribonucleoproteins (RNP) are involved in many essential processes in life. However, the roles of RNA and protein subunits in an RNP complex are often hard to dissect. In many RNP complexes, including the ribosome and the Group II introns, one main function of the protein subunits is to facilitate RNA folding. However, in other systems, the protein subunits may perform additional functions, and can affect the biological activities of the RNP complexes. In this review, we use ribonuclease P (RNase P) as an example to illustrate how the protein subunit of this RNP affects different aspects of catalysis. RNase P plays an essential role in the processing of the precursor to transfer RNA (pre-tRNA) and is found in all three domains of life. While every cell has an RNase P (ribonuclease P) enzyme, only the bacterial and some of the archaeal RNase P RNAs (RNA component of RNase P) are active in vitro in the absence of the RNase P protein. RNase P is a remarkable enzyme in the fact that it has a conserved catalytic core composed of RNA around which a diverse array of protein(s) interact to create the RNase P holoenzyme. This combination of highly conserved RNA and altered protein components is a puzzle that allows the dissection of the functional roles of protein subunits in these RNP complexes.  相似文献   

16.
17.
We have studied the assembly of Escherichia coli RNase P from its catalytic RNA subunit (M1 RNA) and its protein subunit (C5 protein). A mutant form of the protein subunit, C5A49, has been purified to apparent homogeneity from a strain of E. coli carrying a thermosensitive mutation in the rnpA gene. The heat inactivation kinetics of both wild-type and mutant holoenzymes are similar, an indication of equivalent thermal stability. However, when the catalytic efficiencies of the holoenzymes were compared, we found that the holoenzyme containing the mutant protein had a lower efficiency of cleavage than the wild-type holoenzyme at 33, 37, and 44 degrees C. We then explored the interaction of M1 RNA and C5 protein during the assembly of the holoenzyme. The yield of active holoenzyme obtained by reconstitution with wild-type M1 RNA and C5A49 protein in vitro can be considerably enhanced by the addition of excess M1 RNA, just as it can be in vivo. We concluded that the Arg-46----His-46 mutation in the C5A49 protein affects the ability of the protein to participate with M1 RNA in the normal assembly process of RNase P.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号