首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine the effect of formal teaching of ethical issues related to science on middle school students' attitudes towards science and science achievement. A total of 132 Grade 8 (age 13 – 14years) students in Seoul participated, who were divided into the control and the experimental group. Student attitude toward science was assessed using a questionnaire before and after the intervention which composed of five sub-categories: students' interest level in science, students' perception of the practicality of science knowledge, student's opinion on how science is defined, students' perception of the relationships within science, scientists and society, and students' perception of the value of science. The study further examined whether teaching ethical issues in science had any effect on students' achievement level by means of a pre- and post-test evaluation.

The results of this study showed that teaching ethical issues in science had a positive influence on the students' attitudes toward science, specifically, the interest level in science (p = 0.028) and perception of practicality of science knowledge (p = 0.044). However, there was no statistically significant difference in science achievement level between the control and experimental groups. The results imply that there is a need to explore ethical issues in science education, and that incorporating various materials on the ethical perspectives of science and technology in educational material will promote students' positive attitude towards science.  相似文献   

2.
In an effort to increase science exposure for pre-college (K-12) students and as part of the science education reform agenda, many biomedical research institutions have established university-community partnerships. Typically, these science outreach programs consist of pre-structured, generic exposure for students, with little community engagement. However, the use of a medium that is accessible to both teachers and scientists, electronic web-based matchmaking (E-matching) provides an opportunity for tailored outreach utilizing a community-based participatory approach (CBPA), which involves all stakeholders in the planning and implementation of the science outreach based on the interests of teachers/students and scientists. E-matching is a timely and urgent endeavor that provides a rapid connection for science engagement between teachers/students and experts in an effort to fill the science outreach gap. National Lab Network (formerly National Lab Day), an ongoing initiative to increase science equity and literacy, provides a model for engaging the public in science via an E-matching and hands-on learning approach. We argue that science outreach should be a dynamic endeavor that changes according to the needs of a target school. We will describe a case study of a tailored science outreach activity in which a public school that serves mostly under-represented minority students from disadvantaged backgrounds were E-matched with a university, and subsequently became equal partners in the development of the science outreach plan. In addition, we will show how global science outreach endeavors may utilize a CBPA, like E-matching, to support a pipeline to science among under-represented minority students and students from disadvantaged backgrounds. By merging the CBPA concept with a practical case example, we hope to inform science outreach practices via the lens of a tailored E-matching approach.  相似文献   

3.
Globally, calls for the improvement of science education are frequent and fervent. In parallel, the phenomenon of having Science Faculty with Education Specialties (SFES) within science departments appears to have grown in recent decades. In the context of an interview study of a randomized, stratified sample of SFES from across the United States, we discovered that most SFES interviewed (82%) perceived having professional impacts in the realm of improving undergraduate science education, more so than in research in science education or K-12 science education. While SFES reported a rich variety of efforts towards improving undergraduate science education, the most prevalent reported impact by far was influencing the teaching practices of their departmental colleagues. Since college and university science faculty continue to be hired with little to no training in effective science teaching, the seeding of science departments with science education specialists holds promise for fostering change in science education from within biology, chemistry, geoscience, and physics departments.  相似文献   

4.
The transition from bench science to science policy is not always a smooth one, and my journey stretched as far as the unemployment line to the hallowed halls of the U.S. Capitol. While earning my doctorate in microbiology, I found myself more interested in my political activities than my experiments. Thus, my science policy career aspirations were born from merging my love of science with my interest in policy and politics. After receiving my doctorate, I accepted the Henry Luce Scholarship, which allowed me to live in South Korea for 1 year and delve into the field of science policy research. This introduction into science policy occurred at the South Korean think tank called the Science and Technology Policy Institute (STEPI). During that year, I used textbooks, colleagues, and hands-on research projects as my educational introduction into the social science of science and technology decision-making. However, upon returning to the United States during one of the worst job markets in nearly 80 years, securing a position in science policy proved to be very difficult, and I was unemployed for five months. Ultimately, it took more than a year from the end of the Luce Scholarship to obtain my next science policy position with the American Society for Microbiology Congressional Fellowship. This fellowship gave me the opportunity to work as the science and public health advisor to U.S. Senator Harry Reid. While there were significant challenges during my transition from the laboratory to science policy, those challenges made me tougher, more appreciative, and more prepared to move from working at the bench to working in the field of science policy.  相似文献   

5.
Ecklund EH  Lincoln AE 《PloS one》2011,6(8):e22590
Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.  相似文献   

6.
The case often made by scientists (and philosophers) against history and the history of science in particular is clear. Insofar as a field of study is historical as opposed to law-based, it is trivial. Insofar as a field attends to the past of science as opposed to current scientific issues, its efforts are derivative and, by diverting attention from acquiring new knowledge, deplorable. This case would be devastating if true, but it has almost everything almost exactly wrong. The study of history and the study of laws are not mutually exclusive, but unavoidably linked. Neither can be pursued without the other. Much the same can be said of the history of science. The history of science is neither a distraction from “real” science nor even merely a help to science. Rather, the history of science is an essential part of each science. Seeing that this is so requires a broader understanding of both history and science.  相似文献   

7.
Recent science education reform has led to an increased emphasis on engaging students in inquiry and science practices rather than having them simply memorize scientific facts. However, many teachers of elementary science may themselves have had more traditional science learning experiences, and may therefore be unsure about inquiry-based teaching methods. One way to enhance preservice teachers' comfort with and desire to teach science using a hands-on approach might be to engage them in science learning experiences alongside children during their educator preparation program. The purpose of this article is to share how one faculty member and a cooperating teacher from a partner school involve teacher candidates in working with children in the school's garden, allowing them to personally experience inquiry while witnessing firsthand the potential benefits to children of authentic science learning through garden based activities.  相似文献   

8.
The specific field of the history of science is the study and explanation of the origin and transformation of the structures of scientific knowledge. The historian of science should render understandable the reality of scientific research. The relationships between the history of science and the philosophy of science are examined stating that (1) the philosophical theories on the development of science have a scientific content only as much as they may be compared with the results of the history of science, and (2) the philosophy of science does not refer to an immediate historical reality but to an intellectual reconstruction of the past.  相似文献   

9.
Teaching science as inquiry is advocated in all national science education documents and by leading science and science teaching organizations. In addition to teaching science as inquiry, we recognize that learning experiences need to connect to students’ lives. This article details how we use a sequence of faded scaffolded inquiry supported by technologies to engage students meaningfully in science connected to their lives and schoolyards. In this approach, more teacher guidance is provided earlier in the inquiry experiences before this is faded later in the sequence, as students are better prepared to complete successful inquiries. The sequence of inquiry experiences shared in this article offers one possible mechanism for science teaching supported by technologies as an exemplar for translating teaching “science as inquiry” into practice.  相似文献   

10.
A major consequence of seeing science as a cultural activity is the ability to distinguish formally between the normative and expressed behaviors of scientists. Science progresses often in spite of the constraints and conflicting goals imposed on scientists; therefore studying science and studying scientists are not equivalent. Nevertheless, what scientists do is a starting point for understanding how science functions in modern society. The eugenics movement of the 1920s provides a paradigmatic example of how science is invoked as cultural authority, and of the importance in distinguishing among good science, bad science, and pseudo-science. While this may be easy in retrospect, retrospect is too late. Straddling the sciences and humanities, anthropology is situated in a unique position to mediate the “culture wars,” by analyzing both the boundaries of science itself and the activities of scientists in society.  相似文献   

11.
David Hull has demonstrated a marvelous ability to annoy everyone who caresabout science (or should), by forcing us to confront deep truths about howscience works. Credit, priority, precularities, and process weave together tomake the very fabric of science. As Hull's studies reveal, the story is bothmessier and more irritating than those limited by a single disciplinaryperspective generally admit. By itself history is interesting enough, andphilosophy valuable enough. But taken together, they do so much in tellingus about science and by puncturing the comfortable popular illusion abouthow science works. Ultimately, David Hull shows by his example thathistory and philosophy of science can make science better. I agree, and withits focus on the history of science in particular, this paper explores why.  相似文献   

12.
English learners (ELs) benefit from inquiry-based science instruction that includes explicit attention to language learning goals. The purpose of this article is to share a third-grade unit on forces and motion which integrates science inquiry and writing in science notebooks with the goal of developing ELs' engagement in science, conceptual understanding, and academic language and literacy skills. We demonstrate how to engage diverse students' background knowledge and use classroom activities and discussion to create bridges between everyday and academic language. We utilize excerpts from Peter, Lucia, and Andrea's science notebooks to explore and highlight how teachers can use this resource as a means of communicating science, during instruction. Through these EL students' journals, we discuss the importance of developing language goals at the word, sentence, and discourse level while promoting and supporting ELs' use of the language of science.  相似文献   

13.
Abstract

The purpose of this exploratory qualitative study was to investigate elementary student teachers’ conceptions of teaching life science outdoors. The study involved 99 student teachers who were enrolled in an elementary science methods course at a large public university in the United States of America. The study utilised drawings, and narratives to investigate the nature of these teachers’ conceptions. Data analysis revealed that three conceptions of teaching life science were common among the participants: (1) teaching life science is predominantly conceptualised as being situated in the schoolyard, (2) teaching life science outdoors is teacher-directed, and (3) teaching life science outdoors is disconnected from in-class science instruction. Implications include the need for (1) teacher education programmes to provide reflective supports that explicate student teachers’ conceptualisation of teaching life science and thus exposing prior frameworks; and (2) teacher educators to examine student teachers’ prior frameworks for teaching life science outdoors and provide knowledgeable theory and practice platforms that will serve as frameworks for student teachers to adopt, connect and routinize outdoor life science teaching with in-school teaching of life science.  相似文献   

14.
This paper utilizes the framework of Karl Popper’s 3-world ontology to make the case that forensic science is a specialized coding system that establishes meaningful connections between the world of biology (world 1) and the world of human society (world 3). Forensic science is a cross-disciplinary endeavor that uses scientific methods to determine what transpired in a crime so the legal system can determine how to prosecute the offender(s). On a Popperian analysis of forensic science, world 1 consists of evidence gathered at the crime scene, which enables investigators to develop a detailed reconstruction of the incident for consideration under the legal and ethical codes of society, which are products of world 3. Understanding forensic science in this way serves two purposes: first, it extends Marcello Barbieri’s code biology into the realm of philosophical considerations in science, law and ethics; and second, it situates forensic science within the larger context of debates in contemporary philosophy of science.  相似文献   

15.
Philosophical theories about reduction and integration in science are at variance with what is happenign in science. A realistic approach to science show that possibilities for reduction and integration are limited. The classical ideal of a unified science has since long been rejected in philosophy. But the current emphasis on interdisciplinary integration in philosophy and in science shows that it survives in a different guise. It is necessary to redress the balance, specifically in biology. Methodological analysis shows that many of the grand interdisciplinary theories involving biology actually represent pseudo-integration covered up by inappropriate, overgeneral concepts. Integrationism is not bad, but it must be kept within reasonable bounds. If the present analysis is appropriate, there will have to be fundamental changes in research strategy both in science and in the philosophy of science.  相似文献   

16.
生态学在现代科学发展中的地位   总被引:1,自引:0,他引:1  
生态学这个术语由Heckel所首创(1869),在当时并未为学术界所接受,Heckel本人也时以“自然经济学”,时而以“个体生态学”取而代之。尔后,其它生态学家又作过各种不同的解释,如“自然科学史”,“自然界的结构与功能的研究”等,但对生态学解释持反对意见的也不乏其人,如俄国著名的植物生理学家季米里亚捷夫直到最后才放弃自己的意  相似文献   

17.
Daniel Andler 《PSN》2005,3(2):74-87
It is a matter of considerable controversy whether cognitive neuroscience, thanks in large part to functional neuroimaging techniques, is in the process of becoming a new science of the brain and moving into the heart of cognitive science. What are the foundations of this new field ? How will neuroscience and cognitive science coexist in the future ? The paper will attempt to situate neuroimagery in the theoretical framework of fundamental neuroscience, and will show the extent to which cognitive neuroscience depends on it, as it depends on the rest of cognitive science, within which it stands as one research program among several. Should it lead, in a distant future, to a completed science of the brain’s functionalities, such a science would likely not replace cognitive psychology and allied disciplines. Instead, I envisage a form of strong complementarity between the two branches, exclusive of any form of reduction.  相似文献   

18.
王炜晔  翟大业  刘金龙 《生态学报》2024,44(13):5459-5475
保护科学前沿研究重视克服单一学科的局限而向超越自然科学和社会科学跨学科交叉融合转型。基于世界自然保护联盟-世界保护区委员会(IUCN-WCPA)自然保护地管理有效性框架,从规划制定、执行和评估三个方面系统梳理了我国保护科学的研究进展,分析了保护自然科学和社会科学在研究内容、方法和视角等方面的差异,识别出潜在的跨学科综合研究领域。结果表明,我国保护自然科学与社会科学研究大多相互独立、缺乏融合协作,少有的跨学科研究在整体性、系统性、兼容性、深入性和规范性上有待提高。自然科学家在介入社会科学研究时缺乏对现实制度的科学理解,所提出的保护政策和行动建议偏向理想主义,阻碍保护科学跨学科知识生产;社会科学家则缺乏自然科学方法和数据的知识积累,所提出的政策和行动建议脱离事实和证据,偏向主观主义,不利于保护科学知识进步。为此,构建了基于自然保护地适应性管理逻辑下的保护科学跨学科整合框架,以推动保护科学共同话语的形成,实现社会与生态的耦合协调发展。  相似文献   

19.
Authorizing Knowledge in Science and Anthropology   总被引:1,自引:0,他引:1  
An analogy exists between today's "defenders" of science in the "science/culture wars" and 19th-century "defenders" of euclidean geometry. Current critics have appointed themselves as arbiters of truth in a manner analogous to that of 19th-century mathematicians and theologians who argued against noneuclidean geometry that challenge Euclid's mathematically, philosophically, and theologically entrenched fifth postulate. The science wars then and now are not about science versus antiscience, objectivity versus subjectivity, but about authority in science: what kind of science should be practiced, and who gets to define it?  相似文献   

20.
Vocabulary is the essential element of comprehending concepts in content areas. Many words used in science content-area materials are used to define concepts and to increase the conceptual development of the content area. Conceptual development is a major goal of content-area instruction. Without a clear understanding of the language of the science content, students will certainly experience difficulty and a lack of interest with their science content-area material. Providing students with inquiry strategic vocabulary strategies can significantly support their understanding and interest concerning the language of science. As a result of using engaged vocabulary strategies, teachers can help students bridge the gap between the language of the science content and the language and background knowledge that students bring to the class. This article is easily adaptable for grades 6-12, and it is applicable to all science areas. It provides the middle and high school science teacher with five engaged learning vocabulary strategies that will help students become active participants in the learning process as they master their content area material. In addition, the article offers a pre- and postevaluation Science Vocabulary Questionnaire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号