首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
2-keto-3-deoxygluconate transport system in Erwinia chrysanthemi.   总被引:3,自引:2,他引:1       下载免费PDF全文
In Erwinia chrysanthemi, the gene kdgT encodes a transport system responsible for the uptake of ketodeoxyuronates. We studied the biochemical properties of this transport system. The bacteria could grow on 2,5-diketo-3-deoxygluconate but not on 2-keto-3-deoxygluconate. The 2-keto-3-deoxygluconate entry reaction displayed saturation kinetics, with an apparent Km of 0.52 mM (at 30 degrees C and pH 7). 5-Keto-4-deoxyuronate and 2,5-diketo-3-deoxygluconate appeared to be competitive inhibitors, with Kis of 0.11 and 0.06 mM, respectively. The 2-keto-3-deoxygluconate permease could mediate the uptake of glucuronate with a low affinity. kdgT was cloned on an R-prime plasmid formed by in vivo complementation of a kdgT mutation of Escherichia coli. After being subcloned, it was mutagenized with a mini-Mu-lac transposable element able to form fusions with the lacZ gene. We introduced a kdgT-lac fusion into the E. chrysanthemi chromosome by marker exchange recombination and studied its regulation. kdgT product synthesis was not induced by external 2-keto-3-deoxygluconate in the wild-type strain but was induced by galacturonate and polygalacturonate. Two types of regulatory mutants able to grow on 2-keto-3-deoxygluconate as the sole carbon source were studied. Mutants of one group had a mutation in the operator region of kdgT; mutants of the other group had a mutation in kdgR, a regulatory gene controlling kdgT expression.  相似文献   

3.
Using a gnotobiotic mouse model, we previously observed the upregulation of 2-deoxy-D-gluconate 3-dehydrogenase (KduD) in intestinal E. coli of mice fed a lactose-rich diet and the downregulation of this enzyme and of 5-keto 4-deoxyuronate isomerase (KduI) on a casein-rich diet. The present study aimed to define the role of the so far poorly characterized E. coli proteins KduD and KduI in vitro. Galacturonate and glucuronate induced kduD and kduI gene expression 3-fold and 7 to 11-fold, respectively, under aerobic conditions as well as 9 to 20-fold and 19 to 54-fold, respectively, under anaerobic conditions. KduI facilitated the breakdown of these hexuronates. In E. coli, galacturonate and glucuronate are normally degraded by UxaABC and UxuAB. However, osmotic stress represses the expression of the corresponding genes in an OxyR-dependent manner. When grown in the presence of galacturonate or glucuronate, kduID-deficient E. coli had a 30% to 80% lower maximal cell density and 1.5 to 2-fold longer doubling times under osmotic stress conditions than wild type E. coli. Growth on lactose promoted the intracellular formation of hexuronates, which possibly explain the induction of KduD on a lactose-rich diet. These results indicate a novel function of KduI and KduD in E. coli and demonstrate the crucial influence of osmotic stress on the gene expression of hexuronate degrading enzymes.  相似文献   

4.
5.
6.
Two types of Escherichia coli K-12 regulatory mutants, partially or totally negative for the induction of the five catabolic enzymes (uronic isomerase, uxaC; altronate oxidized nicotinamide adenine dinucleotide: uxaB; mannonate hydrolyase, uxuA) and the transport system (exuT) of the hexuronate-inducible pathway, were isolated and analyzed enzymatically. Hexuronate-catabolizing revertants of the negative mutants showed a constitutive synthesis for some or all of these enzymes. Negative and constitutive mutations were localized in the same genetic locus, called exuR, and the following order for the markers situated between the min 65 and 68 was determined: argG--exuR--exuT--uxaC--uxaA--tolC. The enzymatic characterization of the pleiotropic negative and constitutive mutants of the exuR gene suggests that the exuR regulatory gene product exerts a specific and total control on the three exuT, uszB, and uxaC-uxaA operons of the galacturonate pathway and a partial control on the uxuA-uxuB operon of the glucuronate pathway. The analysis of diploid strains conatining both the wild type and a negative or constitutive allele of the exuR gene, as well as the analysis of thermosensitive mutants of the exuR gene, was in agreement with a negative regulatory mechanism for the control of the hexuronate system.  相似文献   

7.
We report the kinetic characteristics for D-galactose, 2-deoxy-D-glucose and 3-O-methyl-D-glucose transport in a galactokinase null-allele mutant of a Chinese hamster V79 cell line. GalKl cells exhibited a Km and Vmax for D-galactose, 2-deoxy-D-glucose, and 3-O-methyl-D-glucose transport of 8.6 +/- 2.6 mM and 26.1 +/- 7.2 nmol/mg p/min, 4.1 +/- 1.2 mM and 40.3 +/- 9.5 nmol/mg p/min, and 7.01 +/- .85 mM and 11.6 +/- 4.8 nmol/mg p/30 s, respectively. Nonsaturable hexose uptake was determined using cytochalasin B inhibition of galactose uptake (89.6 +/- 3.7% of galactose uptake was cytochalasin B inhibitable) and L-glucose uptake (7.5% of the galactose uptake). D-Galactose was not metabolized and effluxed rapidly from preloaded cells. The Kls for the inhibition of D-galactose transport were 4.5 +/- 2.5 mM for D-glucose, 7.0 +/- 2.0 mM for 2-deoxy-D-glucose, 6 mM for 2-deoxy-D-galactose and 6.0 +/- 0.6 mM for 3-O-methyl-D-glucose. This indicates the operation of a single common carrier. The hexose transport rate decreased 50-60% after 24 h serum deprivation. Addition of insulin was shown to increase hexose transport (more than twofold) in serum-deprived cells. Hexose transport rates increased substantially in glucose-deprived, D-fructose- or D-galactose-fed cells as compared to glucose-fed cells. Since GalKl does not metabolize galactose, the hexose transport increases induced by feeding cells galactose suggest that carrier interaction with ligand is not a significant factor in transport regulation in GalKl. The kinetic and regulatory characteristics of D-galactose transport in the GalKl cell line indicate that this system is a good model to study sugar transport from a mechanistic and regulatory point of view.  相似文献   

8.
Neurospora crassa conidia possess an active transport system for the uptake of acetate. This system was characterized as: (a) energy dependent; (b) taking place against a concentration gradient; (c) saturating at higher substrate concentrations and (d) competitively inhibited by propionate. Activity of the acetate transport system can be further enhanced by preincubating conidia in 1 mM acetate medium for 180 min (the inducible transport system). The conidial system and the inducible system have similar properties. The development of the inducible transport was dependent on RNA and protein synthesis. A genetic control of this system was further confirmed by isolating a mutant acp-i acetate permease, inducible) that fails to develop the inducible transport system.  相似文献   

9.
The relationship between ATP levels and 2-deoxyglucose uptake was investigated. When the concentration in the medium lies between 1 and 10 mM 2-deoxyglucose uptake causes a marked decrease in ATP level. This could partly be explained by an inhibiting effect of 2-deoxyglucose and 2-deoxyglucose 6-phosphate on ATP synthesis in the mitochondria. A good correlation between the various ATP levels induced by 2,4-dinitrophenol and the rate of uptake of 5 microM and 0.5 mM (but not 5 mM) 2-deoxyglucose was observed. The addition of glucose and 2-deoxyglucose to cells incubated in the presence of trace amounts of 2-deoxy-[1-14C]glucose induced marked changes in the uptake of the tracer that were associated with a rapid decline in ATP level. It appeared that the phosphorylation of 2-deoxyglucose is an important step in the uptake of the sugar. It is hypothesized that the processes of transport and phosphorylation of 2-deoxyglucose are coupled in rat adipocytes.  相似文献   

10.
Unlike phosphate or potassium transport, uptake of nitrate by roots is induced, in part, by contact with the substrate ion. Plasmalemma influx of 13N-labeled nitrate in maize roots was studied in relation to induction of the uptake system, and the influence of short-term N starvation. Maize (Zea mays) roots not previously exposed to nitrate had a constitutive transport system (state 1), but influx increased 250% during six hours of contact with 100 micromolar nitrate, by which time the transport mechanism appeared to be fully synthesized (state 2). A three-day period of N starvation prior to induction and measurement of nitrate influx resulted in a greater capacity to transport nitrate than in unstarved controls, but this was fully expressed only if roots were kept in contact with nitrate for the six hours needed for full induction (state 2E). A kinetic analysis indicated a 160% increase in maximum influx in N-starved, induced roots with a small decrease in Km. The inducible component to nitrate influx was induced only by contact with nitrate. Full expression of the nitrate inducible transport system was dependent upon mRNA synthesis. An inhibitor of cytoplasmic protein synthesis (cycloheximide) eliminated the formation of the transport system while inhibition by chloramphenicol of mitochondrial- or plastid-coded protein synthesis had no effect. Poisoning of membrane-bound proteins effectively disabled both the constitutive and induced transport systems.  相似文献   

11.
Uptake of ornithine by isolated hepatocytes and its distribution within the cell was investigated. Ornithine uptake was energy independent and exhibited a saturable and a nonsaturable component. The Km value of the saturable component was 1.3 mM. At an external ornithine concentration of 0.5 mM the rate of ornithine uptake was 127 +/- 19 nmol/g. Lysine inhibited ornithine uptake, indicating the existence of an ornithine transport system. It was concluded that ornithine transport can limit urea synthesis in the state of transition from a low ammonia to a high ammonia supply.  相似文献   

12.
Two transport systems for glucose were detected: a high affinity system with a Km of 27 muM, and a low affinity system with a Km of 3.3 mM. The high affinity system transported glucose, 2-deoxy-D-glucose (Km = 26 muM), 3-O-methylglucose (Km = 19 muM), D-glucosamine (Km = 652 muM), D-fructose (Km = 2.3 mM) and L-sorbose (Km = 2.2 mM). All sugars were accumulated against concentration gradients. The high affinity system was strongly or completely inhibited by N-ethylmaleimide, quercetin, 2,4-dinitrophenol and sodium azide. The system had a distinct pH optimum (7.4) and optimum temperature (45 degrees C). The low affinity system transported glucose, 2-deoxy-D-glucose (Km = 7.5 mM), and 3-O-methylglucose (Km = 1.5 mM). Accumulation again occurred against a concentration gradient. The low affinity system was inhibited by N-ethylmaleimide, quercetin and 2,4-dinitrophenol, but not by sodium azide. The rate of uptake by the low affinity system was constant over a wide temperature range (30--50 degrees C) and was not much affected by pH; but as the pH of the medium was altered from 4.5 to 8.9 a co-ordinated increase in affinity for 2-deoxy-D-glucose (from 52.1 mM to 0.3 mM) and decrease in maximum velocity (by a factor of five) occurred. Both uptake systems were present insporelings germinated in media containing sodium acetate as sole carbon source. Only the low affinity system could initially be demonstrated in glucose-grown tissue, although the high affinity system was restored by starvation inglucose-free medium. The half-ti me for restoration of high affinity activity was 3.5 min and the process was unaffected by cycloheximide. Addition of glucose to an acetate-grown culture inactivated the high affinity system with a half-life of 5--7.5 s. Addition of cycloheximide to an acetate-grown culture caused decay of the high affinity system with a half-life of 80 min. Regulation is thus thought to depend on modulation of protein activity rather than synthesis, and the kinetics of glucose, 2-deoxy-D-glucose and 3-O-methylglucose uptake would be consistent with there being a single carrier showing negative co-operativity. Analysis of transport defective mutants revealed defects in both transport systems although the mutants used were alleles of a single gene. It is concluded that this gene (the ftr cistron) is the structural gene for an allosteric molecule which serves both transport systems.  相似文献   

13.
Aslam M  Travis RL  Rains DW 《Plant physiology》1996,112(3):1167-1175
Induction of an NO3- efflux system in intact barley (Hordeum vulgare L.) roots was demonstrated. Since the measurement of NO3- efflux is dependent on its accumulation, experiments were devised to facilitate accumulation under noninducing conditions. This was accomplished by incubating seedlings in 10 mM NO3- in the presence of RNA and protein synthesis inhibitors. Under these conditions NO3- uptake is mediated by constitutive high- and low-affinity transport systems. Control roots were incubated with 1.0 mM NO3-. This resulted in the accumulation of similar levels of NO3- in both treated and control roots; however, cytoplasmic NO3- efflux from inhibitor-treated roots was much lower than from control roots. Following a brief lag period, efflux rates increased rapidly in the presence of NO3- for 8 to 12 h. The NO3- efflux system was also induced by ambient NO2-. After induction the efflux system was relatively stable in the presence of RNA and protein synthesis inhibitors as long as NO3- or NO2- was present. These results suggest that NO3- efflux may be an inducible system requiring both RNA and protein synthesis, as does induction of the uptake system. The efflux system, however, has a much slower turnover rate than the uptake system.  相似文献   

14.
The effect of cadmium (CdCl2) on galactose and phenylalanine uptake by rat everted intestinal rings has been studied. The rings were preincubated (15 min) and incubated (5 min) in the presence of Cd. Galactose uptake (from 0.5 mM to 10 mM) was inhibited by 0.5 mM Cd about 25%. Only the phlorizin-dependent galactose transport was affected by cadmium, being a non-competitive type inhibition. A 15 min washing with saline solution significantly reduced the cadmium induced inhibition, which was practically reversed by washing with 5 mM EDTA. The uptake of 0.5 mM phenylalanine was not affected by 0.5 mM Cd but it was depressed by 1 mM Cd. Such inhibition was exerted on the sodium-dependent phenylaline transport. Washing with 5 mM EDTA diminished only slightly the inhibition of the transport by cadmium. It is suggested that the inhibition of intestinal transport of galactose and phenylalanine by cadmium may be due to its reversible interaction with metal-binding ligands, possibly sulfhydryl groups, related to the luminal transport systems.  相似文献   

15.
Previous work demonstrated that glucose controls its own transport rate in rat skeletal muscle: exposure to high glucose levels down-regulates muscle hexose transport, while glucose withdrawal results in elevated transport rates (J. Biol. Chem. 261:16827-16833, 1986). The present study investigates the mechanism of this autoregulatory system. Preincubation of L8 myocytes at 16 mM glucose reduced subsequent 2-deoxy-D-glucose (dGlc) uptake by 40% within 3 h. Cycloheximide (1 microM) mimicked the action of glucose; the effects of glucose and cycloheximide were not additive. At 50 microM, cycloheximide prevented the modulations of glucose transport induced by exposure of muscle cells to high or low glucose concentrations. Inhibition of glycosylation with tunicamycin A1 reduced the basal dGlc uptake, but did not prevent its up-regulation following glucose withdrawal. Inhibition of RNA synthesis by actinomycin D prevented the down-regulatory effect of glucose. These results indicate that continuous protein synthesis and protein glycosylation are required for the maintenance of the steady-state dGlc uptake. We suggest that glucose exerts its autoregulatory effect on hexose transport by modifying the incorporation of active glucose transporters into the plasma membrane rather than changing their rate of degradation. It is hypothesized that this effect is mediated by a non-glycosylated protein involved in the translocation or activation of glucose transporters.  相似文献   

16.
The conversion of UDP-glucuronate to glucuronate, usually thought to proceed by way of glucuronate 1-phosphate, is a site for short-term regulation of vitamin C synthesis by metyrapone and other xenobiotics in isolated rat hepatocytes. Our purpose was to explore the mechanism of this effect in cell-free systems. Metyrapone and other xenobiotics stimulated, by approximately threefold, the formation of glucuronate from UDP-glucuronate in liver extracts enriched with ATP-Mg, but did not affect the formation of glucuronate 1-phosphate from UDP-glucuronate or the conversion of glucuronate 1-phosphate to glucuronate. This and other data indicated that glucuronate 1-phosphate is not an intermediate in glucuronate formation from UDP-glucuronate, suggesting that this reaction is catalysed by a 'UDP-glucuronidase'. UDP-glucuronidase was present mainly in the microsomal fraction, where its activity was stimulated by UDP-N-acetylglucosamine, known to stimulate UDP-glucuronosyltransferases by enhancing the transport of UDP-glucuronate across the endoplasmic reticulum membrane. UDP-glucuronidase and UDP-glucuronosyltransferases displayed similar sensitivities to various detergents, which stimulated at low concentrations and generally inhibited at higher concentrations. Substrates of glucuronidation inhibited UDP-glucuronidase activity, suggesting that the latter is contributed by UDP-glucuronosyltransferase(s). Inhibitors of beta-glucuronidase and esterases did not affect the formation of glucuronate, arguing against the involvement of a glucuronidation-deglucuronidation cycle. The sensitivity of UDP-glucuronidase to metyrapone and other stimulatory xenobiotics was lost in washed microsomes, even in the presence of ATP-Mg, but it could be restored by adding a heated liver high-speed supernatant or CoASH. In conclusion, glucuronate formation in liver is catalysed by a UDP-glucuronidase which is closely related to UDP-glucuronosyltransferases. Metyrapone and other xenobiotics stimulate UDP-glucuronidase by antagonizing the inhibition exerted, presumably indirectly, by a combination of ATP-Mg and CoASH.  相似文献   

17.
Preferential glutamine uptake in rat brain synaptic mitochondria   总被引:1,自引:0,他引:1  
A Steib  A Rendon  J Mark  J Borg 《FEBS letters》1986,207(1):63-68
Glutamine uptake has been studied in purified rat brain mitochondria of synaptic or non-synaptic origin. It was taken up by an active saturable transport mechanism, with an affinity two-times higher in synaptic than in non-synaptic mitochondria (Km = 0.45 and 0.94 mM, respectively). Vmax of uptake was 7-times higher in synaptic mitochondria (Vmax = 9.2 and 1.3 nmol/min per mg protein, respectively). Glutamine transport was found to be inhibited by L-glutamate (IC50 = 0.64 mM) as well as thiol reagents (mersalyl, N-ethylmaleimide). It is suggested that differential uptake of glutamine in mitochondria of synaptic or non-synaptic origin may be a major mechanism in the regulation of the synthesis of the neurotransmitter glutamate.  相似文献   

18.
Neurospora crassa conidia possess an active transport system for the uptake of acetate. This system was characterized as: (a) energy dependent; (b) taking place against a concentration gradient; (c) saturating at higher substrate concentrations and (d) competitively inhibited by propionate.Activity of the acetate transport system can be further enhanced by preincubating conidia in 1 mM acetate medium for 180 min (the inducible transport system). The conidial system and the inducible system have similar properties. The development of the inducible transport was dependent on RNA and protein synthesis. A genetic control of this system was further confirmed by isolating a mutant (acp−i acetate permease, inducible) that fails to develop the inducible transport system.  相似文献   

19.
Transport of AMP by Rickettsia prowazekii.   总被引:7,自引:6,他引:1       下载免费PDF全文
Rickettsia prowazekii possesses an exchange transport system for AMP. Chromatographic analysis of the rickettsiae demonstrated that transported AMP appeared intracellularly as AMP, ADP, and ATP, and no hydrolytic products appeared in either the intracellular or extracellular compartments. The phosphorylation of AMP to ADP and ATP was prevented by pretreatment of the cells with 1 mM N-ethylmaleimide without inhibiting the transport of AMP. Although no efflux was demonstrable in the absence of nucleotide in the medium, the intracellular adenine nucleotide pool could be exchanged with external unlabeled adenine nucleotides. Both ADP and ATP were as effective as AMP at inhibiting the uptake of [3H]AMP. Although this transport system was inhibited by low temperature (0 degrees C) and partially inhibited by the protonophore carbonyl cyanide-m-chlorophenyl hydrazone (1 mM), it was relatively insensitive to KCN (1 mM). The uptake of AMP at 34 degrees C had an apparent Kt for influx of 0.4 mM and a Vmax of 354 pmol min-1 per mg. At 0 degrees C there was a very rapid and unsaturable association of AMP with these organisms. Correction of the uptake data at 34 degrees C for the 0 degrees C component lowered the apparent Kt to 0.15 mM. Both magnesium and phosphate ions are required for optimal transport activity. Chemical measurements of the total intracellular nucleotide pools demonstrated that this system was not a net adenine nucleotide transport system, but that uptake of AMP was the result of an exchange with internal adenine nucleotides.  相似文献   

20.
Glucocorticoids inhibit glucose utilization by fat cells. The possibility that this effect results from altered glucose transport was investigated using an oil-centrifugation technique which allows a rapid (within 45 s) estimation of glucose or 3-O-methylglucose uptake by isolated fat cells. At high concentration (greater than 25 muM), dexamethasone inhibited glucose uptake within 1 min of its addition to fat cells. Efflux of 3-O-methylglucose was also impaired by 0.1 mM dexamethasone. However, diminished glucose uptake was not a specific effect of glucocorticoids; high concentrations (0.1 mM) of 17beta-estradiol, progesterone, and deoxycorticosterone produced a similar response in adipocytes. At a more physiologic steroid concentration (0.1 muM), glucocorticoids inhibited glucose uptake in a time-dependent manner (maximum effect in 1 to 2 hours). This effect was specific for glucocorticoids since, under these conditions, glucose uptake was not changed by the non-glucocorticoid steroids. Lineweaver-Burk analysis showed that 0.1 muM dexamethasone treatment produced a decrease in Vmax for glucose uptake but did not change the Ku. Hexokinase activity and ATP levels were not altered by this treatment, suggesting that processes involved in glucose phosphorylation were not affected. Dexamethasone treatment also caused a reduction in uptake of 3-O-methylglucose when assayed using a low sugar concentration (0.1 mM). At a high concentration (10 mM), uptake of the methyl sugar was only slightly less than normal in treated cells. Stimulation by insulin markedly enhanced uptake of glucose and 3-O-methylglucose by both treated and untreated cells. At a low hexose concentration (0.1 mM) and in the presence of insulin, sugar uptake by dexamethasone-treated cells was slightly less than control cells. Stimulation by insulin did however completely overcome the alteration in hexose uptake when larger concentrations of sugars (greater than 5 mM) were used. There was no detectable change in total protein synthesis during incubation of fat cells with dexamethasone. However, actinomycin C blocked the inhibitory effect of dexamethasone on glucose uptake. Cycloheximide, which caused a small inhibition in glucose uptake, prevented the full expression of the inhibitory effect of dexamethasone on glucose transport. These results indicate that dexamethasone alters the facilitated transport of glucose and, secondly, suggest that synthesis of RNA and protein is needed for glucocorticoid action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号