首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mAb was isolated (mAb BD6) that recognized a surface glycoprotein on rat basophilic leukemia cells (RBL-2H3). The antibody bound to 2 x 10(6) molecules/cell and specifically blocked IgE binding (50% inhibition with 3.48 +/- 0.51 micrograms/ml; mean +/- SEM), although neither IgE nor anti-high affinity IgE receptor (anti-Fc epsilon RI) mAb blocked mAb BD6 binding to the cells. mAb BD6 did not affect the rate of dissociation of cell-bound IgE, nor did it induce or inhibit the internalization of IgE. mAb BD6 did not release histamine. However, it did cause rapid spreading of the cells. By 1 h the cells had retracted to a spherical shape with their surface covered with membranous spikes, and they could easily be detached from the tissue culture plate. These changes differed from those observed after Fc epsilon RI activation. mAb BD6 immunoprecipitated a complex of two proteins, 38 to 50 kDa and 135 kDa from 125I-surface labeled rat basophilic leukemia cells that are not subunits of Fc epsilon RI. Chemical cross-linking studies showed that these molecules are associated on the cell surface. By immunoblotting, mAb BD6 reacted with a 40-kDa protein. Therefore, mAb BD6 binds to a surface protein that is close to the Fc epsilon RI and sterically inhibits 125I-IgE binding.  相似文献   

2.
A monoclonal antibody (mAb), AD1, was isolated that recognized a cell surface protein on rat basophilic leukemia cells (RBL-2H3). At high concentration, this antibody inhibited IgE-mediated but not calcium ionophore-induced histamine release (49% inhibition at 100 micrograms/ml). The mAb AD1 did not inhibit the binding of IgE or of several antibodies directed to the high affinity IgE receptor (Fc epsilon RI). Likewise, IgE did not inhibit mAb AD1 binding. However, several anti-Fc epsilon RI antibodies did inhibit mAb AD1 binding as intact molecules but not as Fab fragments. Therefore, the sites on the cell surface to which mAb AD1 binds are close to Fc epsilon RI. The mAb AD1 immunoprecipitated a broad, 50-60-kDa band from 125I-surface-labeled RBL-2H3 cells that upon peptide N-glycosidase F treatment was transformed into a sharp 27-kDa band. A similar 27-kDa protein was immunoprecipitated from surface-radiolabeled cells after culture with tunicamycin. Thus, the protein recognized by mAb AD1 is highly glycosylated with predominantly N-linked oligosaccharides. The N-terminal sequence of 43 amino acids was found to be different from any subunit of Fc epsilon RI but nearly identical to that of the human melanoma-associated antigen ME491. Therefore, mAb AD1 binds to a surface glycoprotein on RBL-2H3 cells sterically close to the Fc epsilon RI but distinct from the recognized subunits of the receptor.  相似文献   

3.
Monoclonal antibodies that inhibit IgE binding   总被引:12,自引:0,他引:12  
Four monoclonal antibodies were produced that inhibit IgE binding to the high affinity IgE receptor (Fc epsilon R) on rat basophilic leukemia cells. The four monoclonal antibodies (mAb) fall into two groups. The first group was comprised of 3 antibodies (mAb BC4, mAb CD3, and mAb CA5) that reacted with the Fc epsilon R at epitopes close or identical to the IgE-binding site. With 125I-labeled antibodies there was reciprocal cross-inhibition between the antibodies and IgE. The antibodies activated both RBL-2H3 cells and normal rat mast cells for histamine release. The 3 antibodies immunoprecipitated the previously described alpha, beta, and gamma components of the receptor. The number of radiolabeled Fab fragments of 2 of these antibodies bound per cell was similar or equal to the number of IgE receptors. In contrast, the mAb BC4 Fab bound to 2.1 +/- 0.4 times the number of IgE receptor sites. Therefore, the portion of the Fc epsilon R exposed on the cell surface must have two identical epitopes and an axis of symmetry. These 3 monoclonal antibodies recognize different but closely related epitopes in the IgE-binding region of the Fc epsilon R. The fourth monoclonal antibody (mAb AA4) had different characteristics. In cross-inhibition studies, IgE and the other 3 monoclonals did not inhibit the binding of this 125I-labeled monoclonal antibody. The number of molecules of this antibody bound per cell was approximately 14-fold greater than the Fc epsilon R number. This monoclonal antibody caused the inhibition of histamine release and it appears to bind to several cell components.  相似文献   

4.
We have produced three different mAb specific for human IgE-Fc. Their binding pattern to either heat-denatured IgE or a family of overlapping IgE-derived recombinant peptides and their ability to affect interaction of IgE with its low affinity receptor Fc epsilon R2/CD23 demonstrate that they recognize distinct epitopes on the IgE molecule. All three mAb were able to induce basophil degranulation as measured by the induction of histamine release. mAb 173 recognizes a thermolabile epitope in the CH4 domain. It does not affect the binding of IgE to Fc epsilon R2/CD23. mAb 272 recognizes a thermostable epitope that maps to a sequence of 36 amino acids (AA) spanning part of the CH2 and CH3 domain and it does not affect the binding of IgE to Fc epsilon R2/CD23. mAb 27 recognizes a thermolabile epitope located on a 10 AA stretch (AA 367-376) in the CH3 domain. This area contains one N-linked oligosaccharide (Asn-371), but the antibody is not directed against carbohydrate because it binds to Escherichia coli-derived IgE peptides. mAb 27 inhibits the binding of IgE to Fc epsilon R2/CD23 but is still capable of reacting with IgE already bound to Fc epsilon R2/CD23. These data suggest that upon binding to Fc epsilon R2/CD23, the IgE molecule engages one of two equivalent-binding sites close to the glycosylated area of the CH3 domain.  相似文献   

5.
Polymorphonuclear neutrophils (PMNs) are important effector cells in host defense and the inflammatory response to antigen. The involvement of PMNs in inflammation is mediated mainly by the Fc receptor family, including IgE receptors. Recently, PMNs were shown to express two IgE receptors (CD23/Fc epsilon RII and galectin-3). In allergic diseases, the dominant role of IgE has been mainly ascribed to its high-affinity receptor, Fc epsilon RI. We have examined the expression of Fc epsilon RI by PMNS: mRNA and cell surface expression of Fc epsilon RI alpha chain was identified on PMNs from asthmatic subjects. Furthermore, preincubation with human IgE Fc fragment blocks completely the binding of anti-Fc epsilon RI alpha chain (mAb15--1) to human PMNS: Conversely, preincubation of PMNs with mAb15--1 inhibits significantly the binding of IgE Fc fragment to PMNs, indicating that IgE bound to the cell surface of PMNs mainly via the Fc epsilon RI. Peripheral blood and bronchoalveolar lavage (BAL) PMNs from asthmatic subjects also express intracellular Fc epsilon RI alpha and beta chain immunoreactivity. Engagement of Fc epsilon RI induces the release of IL-8 by PMNS: Collectively, these observations provide new evidence that PMNs express the Fc epsilon RI and suggest that these cells may play a role in allergic inflammation through an IgE-dependent activation mechanism.  相似文献   

6.
The high affinity receptor for IgE (Fc epsilon RI) is present on mast cells and basophils, and the aggregation of IgE-occupied receptors by Ag is responsible for the release of allergic mediators. The Fc epsilon RI is composed of at least three different subunits, alpha, beta, and gamma, with the alpha subunit binding IgE. The series of biochemical events linking receptor aggregation to the release of mediators has not been fully delineated. As a step towards understanding these processes, and for the development of functional cell lines, we have transfected the human Fc epsilon RI alpha subunit into the rat mast cell line RBL 2H3. These human Fc epsilon RI alpha-transfected cell lines have been characterized with respect to the association of the human alpha subunit with endogenous rat beta and gamma subunits and the ability of aggregated Fc epsilon RI alpha subunits to mediate a variety of biochemical events. The signal transduction events monitored include phosphoinositide hydrolysis, Ca2+ mobilization, tyrosine phosphorylation, histamine release, and arachidonic acid metabolism. In all cases, the events mediated by aggregating human Fc epsilon RI alpha subunits were indistinguishable from those produced via the rat Fc epsilon RI alpha. These results demonstrate that the human Fc epsilon RI alpha subunit can functionally substitute for the rat Fc epsilon RI alpha subunit during signal transduction. The availability of this cell line will provide a means of evaluating potential Fc epsilon RI antagonists.  相似文献   

7.
We investigated the effects of IgE versus IL-4 on Fc epsilon RI surface expression in differentiated human mast cells derived in vitro from umbilical cord blood mononuclear cells. We found that IgE (at 5 micrograms/ml) much more strikingly enhanced surface expression of Fc epsilon RI than did IL-4 (at 0.1-100 ng/ml); similar results were also obtained with differentiated mouse mast cells. However, IL-4 acted synergistically with IgE to enhance Fc epsilon RI expression in these umbilical cord blood-derived human mast cells, as well as in mouse peritoneal mast cells derived from IL-4-/- or IL-4+/+ mice. We also found that: 1) IgE-dependent enhancement of Fc epsilon RI expression was associated with a significantly enhanced ability of these human mast cells to secrete histamine, PGD2, and leukotriene C4 upon subsequent passive sensitization with IgE and challenge with anti-IgE; 2) preincubation with IL-4 enhanced IgE-dependent mediator secretion in these cells even in the absence of significant effects on Fc epsilon RI surface expression; 3) when used together with IgE, IL-4 enhanced IgE-dependent mediator secretion in human mast cells to levels greater than those observed in cells that had been preincubated with IgE alone; and 4) batches of human mast cells generated in vitro from umbilical cord blood cells derived from different donors exhibited differences in the magnitude and pattern of histamine and lipid mediator release in response to anti-IgE challenge, both under baseline conditions and after preincubation with IgE and/or IL-4.  相似文献   

8.
Although Fc epsilon R have been detected on human eosinophils, levels varied from moderate to extremely low or undetectable depending on the donor and methods used. We have attempted to resolve the conflicting data by measuring levels of IgE, Fc epsilon RI, and Fc epsilon RII in or on human eosinophils from a variety of donors (n = 26) and late-phase bronchoalveolar lavage fluids (n = 5). Our results demonstrated little or no cell surface IgE or IgE receptors as analyzed by immunofluorescence and flow cytometry. Culture of eosinophils for up to 11 days in the presence or absence of IgE and/or IL-4 (conditions that enhance Fc epsilon R on other cells) failed to induce any detectable surface Fc epsilon R. However, immunoprecipitation and Western blot analysis of eosinophil lysates using mAb specific for Fc epsilon RI alpha showed a distinct band of approximately 50 kDa, similar to that found in basophils. Western blotting also showed the presence of FcR gamma-chain, but no Fc epsilon RI beta. Surface biotinylation followed by immunoprecipitation again failed to detect surface Fc epsilon RI alpha, although surface FcR gamma was easily detected. Since we were able to detect intracellular Fc epsilon RI alpha, we examined its release from eosinophils. Immunoprecipitation and Western blotting demonstrated the release of Fc epsilon RI alpha into the supernatant of cultured eosinophils, peaking at approximately 48 h. We conclude that eosinophils possess a sizable intracellular pool of Fc epsilon RI alpha that is available for release, with undetectable surface levels in a variety of subjects, including those with eosinophilia and elevated serum IgE. The biological relevance of this soluble form of Fc epsilon RI alpha remains to be determined.  相似文献   

9.
A Nissim  M H Jouvin    Z Eshhar 《The EMBO journal》1991,10(1):101-107
Identification of the precise region(s) on the IgE molecule that take part in the binding of IgE to its high affinity receptor (Fc epsilon RI) may lead to the design of IgE analogues able to block the allergic response. To localize the Fc epsilon RI-binding domain of mouse IgE, we attempted to confer on human IgE, which normally does not bind to the rodent receptor, the ability to bind to the rat Fc epsilon RI. Employing exon shuffling, we have expressed chimeric epsilon-heavy chain genes composed of a mouse (4-hydroxy-3-nitrophenyl)acetic acid (NP)-binding VH domain, and human C epsilon in which various domains were replaced by their murine counterparts. This has enabled us to test the Fc epsilon RI-binding of each mouse IgE domain while maintaining the overall conformation of the molecule. All of the chimeric IgE molecules which contain the murine C epsilon 3, bound equally to both the rodent and human receptor, as well as to monoclonal antibodies recognizing a site on IgE which is identical or very close to the Fc epsilon RI binding site. Deletion of the second constant region domain did not impair either the binding capacity of the mutated IgE or its ability to mediate mast cell degradation. These results assign the third epsilon domain of IgE as the principal region involved in the interaction with the Fc epsilon RI.  相似文献   

10.
Kinetics of ligand binding to the type 1 Fc epsilon receptor on mast cells   总被引:2,自引:0,他引:2  
Rates of association and dissociation of several specific monovalent ligands to and from the type I Fc epsilon receptor (Fc epsilon RI) were measured on live mucosal type mast cells of the rat line RBL-2H3. The ligands employed were a monoclonal murine IgE and Fab fragments prepared from three different, Fc epsilon RI-specific monoclonal IgG class antibodies. These monoclonals (designated H10, J17, and F4) were shown previously to trigger mediator secretion by RBL-2H3 mast cells upon binding to and dimerization of the Fc epsilon RI. Analysis of the kinetics shows that the minimal mechanism to which all data can be fitted involves two consecutive steps: namely, ligand binding to a low-affinity state of the receptor, followed by a conformational transition into a second, higher affinity state h of the receptor-ligand complex. These results resolve the recently noted discrepancy between the affinity of IgE binding to the Fc epsilon RI as determined by means of binding equilibrium measurements [Ortega et al. (1988) EMBO J. 7, 4101] and the respective parameter derived from the ratio of the rate constant of rat IgE dissociation and the initial rate of rat IgE association [Wank et al. (1983) Biochemistry 22, 954]. The probability of undergoing the conformational transition differs for the four different Fc epsilon RI-ligand complexes: while binding of Fab-H10 and IgE favors the h state, binding of Fab-J17 and Fab-F4 preferentially maintains the low-affinity 1 state (at 25 degrees C). The temperature dependence of the ligand interaction kinetics with the Fc epsilon RI shows that the activation barrier for ligand association is determined by positive enthalpic and entropic contributions. The activation barrier of the 1----h transition, however, has negative enthalpic contributions counteracted by a decrease in activation entropy. The h----1 transition encounters a barrier that is predominantly entropic and similar for all ligands employed, thus suggesting that the Fc epsilon RI undergoes a similar conformational transition upon binding any of the ligands.  相似文献   

11.
An effort was made to discover mast cell degranulating (MCD) peptide analogs that bind with high affinity to mast cell receptors without triggering secretion of histamine or other mediators of the allergic reaction initiated by immunoglobulin E (IgE) after mast cell activation. Such compounds could serve as inhibitors of IgE binding to mast cell receptors. An alanine scan of MCD peptide reported previously showed that the analog [Ala12]MCD was 120-fold less potent in histamine-releasing activity and fivefold more potent in binding affinity to mast cell receptors than the parent MCD peptide. Because this analog showed marginal intrinsic activity and good binding affinity it was subsequently tested in the present study as an IgE inhibitor. In contrast to MCD peptide, [Ala12]MCD showed a 50% inhibition of IgE binding to the Fc epsilon RI alpha mast cell receptor by using rat basophilic leukemia (RBL-2H3) mast cells and fluorescence polarization. Furthermore, in a beta-hexosaminidase secretory assay, the peptide also showed a 50% inhibition of the secretion of this enzyme caused by IgE. An attempt was made to relate structural changes and biologic differences between the [Ala12]MCD analog and the parent MCD peptide. The present results show that [Ala12]MCD may provide a base for designing agents to prevent IgE/Fc epsilon RI alpha interactions and, consequently, allergic conditions.  相似文献   

12.
Rodent B cells respond to culture with IgE by increasing their IgE-specific Fc receptors (Fc epsilon R). The mechanism of this upregulation was characterized on Fc epsilon R+ murine B cell hybridoma lines. Measurements of [35S]methionine incorporated into the Fc epsilon R over time indicated that IgE did not appreciably increase the rate of Fc epsilon R synthesis. In contrast analysis of Fc epsilon R decay from surface radioiodinated B hybridoma cells demonstrated that IgE acted to slow the rate of Fc epsilon R degradation. Very little endocytosis of monomeric IgE was seen; this, combined with the observation that lysomotropic agents failed to inhibit Fc epsilon R degradation suggested that decay occurs at the cell surface. A soluble receptor immunoassay was developed, using monoclonal anti-Fc epsilon R, and this assay demonstrated that cell-bound IgE inhibited the release into the culture media of soluble immunoreactive Fc epsilon R. Examination of the soluble Fc epsilon R by SDS-PAGE after isolation with monoclonal anti-Fc epsilon R demonstrated that it was 10,000 m.w. smaller than the cell-associated Fc epsilon R. IgE affinity columns failed to bind the Fc epsilon R fragment, indicating that the ligand binding activity was largely lost. Thus this study demonstrated that IgE-dependent Fc epsilon R induction on B cells occurs because IgE upon binding to the B cell surface, inhibits the proteolytic cleavage and release of the Fc epsilon R into the surrounding medium, and it is this inhibition of degradation that causes the higher Fc epsilon R levels.  相似文献   

13.
We report the first application of polarized fluorescence depletion (PFD), a technique which combines the sensitivity of fluorescence detection with the long lifetimes of triplet probes, to the measurement of membrane protein rotational diffusion on individually selected, intact mammalian cells. We have examined the rotation of type I Fc epsilon receptors (Fc epsilon RI) on rat mucosal mast cells of the RBL-2H3 line in their resting monomeric and differently oligomerized states using as probes IgE and three monoclonal antibodies (mAbs; H10, J17, and F4) specific for the Fc epsilon RI. PFD experiments using eosin (EITC)-IgE show that individual Fc epsilon RI on cells have a rotational correlation time (RCT) at 4 degrees C of 79 +/- 4 microseconds. Similarly, Fc epsilon RI-bound EITC-Fab fragments of the J17 Fc epsilon RI-specific mAb exhibit an RCT of 76 +/- 6 microseconds. These values agree with previous measurements of Fc epsilon RI-bound IgE rotation by time-resolved phosphorescence anisotropy methods. Receptor-bound EITC-conjugated divalent J17 antibody exhibits an increased RCT of 140 +/- 6 microseconds. This is consistent with the ability of this mAb to form substantial amounts of Fc epsilon RI dimers on these cell surfaces. The ratio of limiting to initial anisotropy in these experiments remains constant at about 0.5 from 5 degrees C through 25 degrees C for IgE, Fab, and intact mAb receptor ligands. Extensive cross-linking by second antibody of cell-bound IgE, of intact Fc epsilon RI-specific mAbs or of their Fab fragments, however, produced large fixed anisotropies demonstrating, under these conditions, receptor immobilization in large aggregates. PFD using the mAbs H10 and F4 as receptor probes yielded values for triplet lifetimes, RCT values, and anisotropy parameters essentially indistinguishable from those obtained with the mAb J17 clone. Possible explanations for these observations are discussed.  相似文献   

14.
The high-affinity IgE receptor Fc epsilon RI is expressed on the cell surface of mast cells and basophils, and plays a central role in IgE-mediated inflammatory reactions. Recently, peroxisome proliferator-activated receptors (PPARs) have been implicated in the anti-inflammatory response. To investigate a possible role for PPAR in human basophils, the effect of PPAR ligands on Fc epsilon RI expression in human basophilic KU812 cells was studied. The PPARalpha ligand, leukotriene B(4), did not affect the cell surface expression of Fc epsilon RI. However, prostaglandin (PG) A(1) and 15-deoxy-Delta(12,14) PGJ(2) (15d-PGJ(2)), which are PPARbeta and gamma ligands, respectively, were both able to decrease Fc epsilon RI expression. Treatment with PGA(1) or 15d-PGJ(2) separately also reduced histamine release from KU812 cells in response to cross-linkage of Fc epsilon RI. In addition, RT-PCR analysis showed that KU812 cells expressed the mRNA for PPARalpha, beta, and gamma, indicating that PPARbeta or gamma may negatively regulate the cell activation via Fc epsilon RI. Cells treated with 15d-PGJ(2) expressed lower levels of Fc epsilon RI alpha and gamma mRNA, and PGA(1) treatment decreased the level of Fc epsilon RI gamma mRNA. These results suggest that the suppression of Fc epsilon RI expression by PPARs may be due to the down-regulation of Fc epsilon RI alpha or gamma mRNA.  相似文献   

15.
The alpha-chain of Fc epsilon RI (Fc epsilon RIalpha) plays a critical role in the binding of IgE to Fc epsilon RI. A fully human antibody interfering with this interaction may be useful for the prevention of IgE-mediated allergic diseases. Here, we describe the successful isolation of a human single-chain Fv antibody specific to human Fc epsilon RIalpha using human antibody phage display libraries. Using the non-immune phage antibody libraries constructed from peripheral blood lymphocyte cDNA from 20 healthy subjects, we isolated three phage clones (designated as FcR epsilon 27, FcR epsilon 51, and FcR epsilon 70) through two rounds of biopanning selection. The purified soluble scFv, FcR epsilon 51, inhibited the binding of IgE to recombinant Fc epsilon RIalpha, although both FcR epsilon 27 and FcR epsilon 70 showed fine binding specificity to Fc epsilon RIalpha. Since FcR epsilon 51 was determined to be a monomer by HPLC, BIAcore analysis was performed. The dissociation constant of FcR epsilon 51 to Fc epsilon RIalpha was estimated to be 20 nM, i.e., fortyfold lower than that of IgE binding to Fc epsilon RIalpha (K(d) = 0.5 nM). With these characteristics, FcR epsilon 51 exhibited inhibitory activity on the release of histamine from passively sensitized human peripheral blood mononuclear cells.  相似文献   

16.
17.
Antigenic relationships between the low affinity Fc epsilon R present on murine B and T lymphocytes were studied. A rat mAb (B3B4) and two polyclonal antisera produced by immunizing with the murine B lymphocyte Fc epsilon RII were examined for their ability to inhibit binding of IgE to murine B or T lymphocytes, using an IgE-specific rosette assay. One polyclonal antiserum (goat-anti-mouse Fc epsilon R) inhibited binding of IgE to both B and T lymphocytes, whereas another polyclonal antiserum (rabbit-anti-mouse Fc epsilon R) and the rat mAb inhibited the binding of IgE to B lymphocytes but did not influence the binding of IgE to T lymphocytes. When lymphocytes were surface labeled with 125I, 49-kDa and 38-kDa IgE-binding proteins were immunoprecipitated from B lymphocyte lysates by B3B4 and from B and T lymphocyte lysates by the goat antiserum. Taken together, these results suggest that the Fc epsilon R present on murine B and T lymphocytes are structurally related receptors that share some, but not all, epitopes.  相似文献   

18.
I Pecht  E Ortega  T M Jovin 《Biochemistry》1991,30(14):3450-3458
The rotational motions of the type I receptor for the Fc epsilon domains (Fc epsilon RI) present on mast cells were investigated by measuring the phosphorescence emission and anisotropy decay kinetics of erythrosin (Er) covalently bound to several Fc epsilon RI-specific macromolecular ligands. The latter consisted of three murine monoclonal antibodies (IgG class) raised against the Fc epsilon RI of rat mast cells (RBL-2H3 line), their Fab fragments, and a murine monoclonal IgE. Different anisotropy decay patterns were observed for the three monovalent Er-Fab fragments bound to the Fc epsilon RI, reflecting the rotational motion of the Fe epsilon RI reported by each specific macromolecular probe bound to its particular epitope. Internal motions of the tethered Er-labeled ligands may also contribute to the observed anisotropy decay, particularly in the case of cell-bound IgE. The results corroborate an earlier study with rat Er-IgE in which the Fc epsilon RI-IgE complex was shown to be mobile throughout the temperature range examined (5-37 degrees C). The anisotropy decays of the three Er-labeled, Fc epsilon RI-specific intact mAbs bound to cells also differed markedly. Whereas the decay curves of one mAb (H10) were characterized by temperature-dependent positive amplitudes and rather short rotational correlation times, the decay of a second mAb (J17) showed complex qualitative variations with temperature, and in the case of the third antibody (F4), there was no apparent decay of anisotropy over the time and temperature ranges examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Regulation of mast-cell and basophil function and survival by IgE   总被引:1,自引:0,他引:1  
Mast cells and basophils are important effector cells in T helper 2 (T(H)2)-cell-dependent, immunoglobulin-E-associated allergic disorders and immune responses to parasites. The crosslinking of IgE that is bound to the high-affinity receptor Fc epsilon RI with multivalent antigen results in the aggregation of Fc epsilon RI and the secretion of products that can have effector, immunoregulatory or autocrine effects. This response can be enhanced markedly in cells that have been exposed to high levels of IgE, which results in the increased surface expression of Fc epsilon RI. Moreover, recent work indicates that monomeric IgE (in the absence of crosslinking) can render mast cells resistant to apoptosis induced by growth-factor deprivation in vitro and, under certain circumstances, can induce the release of cytokines. So, the binding of IgE to Fc epsilon RI might influence mast-cell and basophil survival directly or indirectly, and can also regulate cellular function.  相似文献   

20.
RBL-2H3 cells have been widely used to study histamine release in vitro. It was previously shown that these cells undergo striking morphological changes after IgE-mediated secretion. The present study was undertaken to examine if the morphological changes were dependent on activation of the Fc epsilon receptor. Therefore, the cells were stimulated to release histamine by two different mechanisms: activation of the Fc epsilon receptor by antigen and treatment with the calcium ionophore A23187. Cell surface and cytoskeletal changes were examined by fluorescence microscopy and scanning electron microscopy after either IgE- or ionophore-mediated histamine release. After exposure of the cells to either secretagogue, the cells spread over the surface of the culture dish and underwent rearrangement of the cytoskeleton. In addition, scanning electron microscopy revealed that deep ruffles developed on the surface of the cells undergoing IgE-mediated release. The surface changes were not as pronounced with the ionophore. The distribution of the cytoskeletal elements was examined by immunofluorescence using FITC-phalloidin and antibodies against vimentin and tubulin. In unstimulated cells actin was localized at the cell periphery, just under the plasma membrane. In the stimulated cells it was associated with the cell periphery and concentrated in the surface ruffles. As the stimulated cells spread, intermediate filaments and microtubules became distributed throughout the cell body, but there was no obvious association with the membrane ruffles. These morphological changes were dependent on the presence of extracellular calcium and on the concentration of ionophore or antigen, and were also correlated with the amount of histamine released. Additionally, IgE-mediated stimulation led to increased uptake of the soluble-phase tracer Lucifer yellow, whereas stimulation with the ionophore A23187 showed no increase in Lucifer yellow internalization. Ionophore A23187 produced changes similar but not identical to those seen in the RBL-2H3 cells after IgE-mediated histamine release. The differences may be owing to the involvement of the Fc epsilon receptor in IgE-mediated secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号