首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Phylogenetic relationship of the cultivated rices Oryza sativa and O. glaberrima with the O. perennis complex, distributed on the three continents of Asia, Africa and America, and O. australiensis has been studied using Fraction 1 protein and two repeated DNA sequences as markers. Fraction 1 protein isolated from the leaf tissue of accessions of different species was subjected to isoelectric focusing. All the species studied have similar nuclear-encoded small subunit polypeptides and chloroplast-encoded large subunit polypeptides, except two of the O. perennis accessions from South America and O. australiensis, which have a different pattern for the chloroplast subunit. Two DNA sequences were isolated from Eco R1 restriction endonuclease digests of total DNA from O. sativa. One of the sequences has been characterized as highly repeated satellite DNA, and the other one as a moderately repeated DNA sequence. These sequences were used as probes in DNA/DNA hybridization with restriction endonuclease digested DNA from some accessions of the different species. Those accessions that are divergent for large subunit polypeptides of Fraction 1 protein (O. australiensis and two of the four South American O. perennis accessions) also lack the satellite DNA and have a different hybridization pattern with the moderately repeated sequence. All other accessions, irrespective of their geographical origin, are similar. We propose that various accessions of O. perennis from Africa and Asia are closely related to O. sativa and O. glaberrima, and that the dispersal of cultivated and O. perennis rices to different continents may be quite recent. The American O. perennis is a heterogeneous group. Some of the accessions ascribed to this group are closely related to the Asian and African O. perennis, while others have diverged.  相似文献   

2.
Summary The interrelationships among ten different A-genome species of the genus Oryza were studied based on variations in the electrophoretic pattern of isoenzymes of two non-specific enzymes, esterase and peroxidase. There were 16 isoenzymes of esterase and 14 of peroxidase. The esterase pattern could be classified into 3 different Zymograms 1e, 2e & 3e based on the presence and/or absence of bands at particular Rf values. The pattern le was found exclusively among the species and varietal groups of sativa complex, whereas 2e and 3e were distributed exclusively among the species of the glaberrima complex and related wild forms. The peroxidase pattern also fell into 3 different zymograms viz. 1p, 2p and 3p. Unlike esterase, all three zymograms were present in both the sativa and glaberrima complexes.The similarity indices (S) between the different pairs of entries were computed taking into account the presence as well as the relative intensity of the corresponding isoenzyme bands. The varieties and sub-species of 0.sativa showed very high similarity values with the Asian perennis (O.perennis sub sp. balunga), lending evidence for the probable differentiation of the former from the latter. The African cultivated species O.glaberrima showed very high similarity to the African perennis form O.pevennis sub sp. barthii, O.breviligulata and O.stapfii. The only cubensis form studied had the same esterase and peroxidase pattern as that of the species of the glaberrima complex and also a very high similarity with this group. Thus, the entire A-genome species could be broadly grouped into the sativa and glaberrima complexes, and within the group there was a lot of overlapping in similarity values making it difficult to identify and pin-point species or subspecies based on their isoenzyme patterns and similarity values.  相似文献   

3.
N. M. Nayar 《Genetica》1967,38(1):521-527
The prevalence of self-incompatibility inOryza barthii Cheval. and its implications on the origin of riceO. sativa L. and some other related taxa are discussed. It is suggested that evolution has been fromO. barthii toO. perennis toO. sativa with corresponding changes in breeding system from allogamy to facultative autogamy to obligate autogamy. The significance of the breeding system for speciation and evolutionary potentialities of these three taxa is pointed out. The presence inO. barthii of the most primitive characters of the genus and its widespread presence in tropical Africa (where nine out of 23 species of the genus occur) have been interpreted as suggesting that this region might have been the centre of origin of the genus.  相似文献   

4.
Duan S  Lu B  Li Z  Tong J  Kong J  Yao W  Li S  Zhu Y 《Biochemical genetics》2007,45(1-2):113-129
Species in the genus Oryza (Poaceae) contain 10 genomic types and are distributed in pan-tropics of the world. To explore phylogenetic relationships of Oryza species having the AA-genome, DNA sequences of the chloroplast trnL intron and trnL-trnF spacer, mitochondrial nad1 intron 2, and nuclear internal transcribed spacer were analyzed, based on materials from 6 cultivated (O. sativa and O. glaberrima) and 13 wild accessions, in addition to a CC-genome species (O. officinalis) that was used as an outgroup. Analyses of the combined sequence data set from different sources provide a much better resolution of the AA-genome species than the individual data set, indicating the limitation of a single gene in phylogenetic reconstruction. The phylogeny based on the combined data set demonstrated an apparent grouping of the AA-genome Oryza species that was well associated with their geographic origin, although the Australian O. meridionalis showed its affinity with the African species. The geographic pattern of the phylogenetic relationship was probably attributed to the frequent genetic exchange and introgression among the AA-genome species from the same continents. In addition, Asian cultivated rice O. sativa showed its close relation to O. rufipogon and O. nivara, whereas African cultivated rice O. glaberrima was closely linked to O. barthii and O. longistaminata, indicating the independent domestication of the two cultivated species in different geographic locations.  相似文献   

5.
Summary Sterile AC hybrids between cultivated Oryza sativa (AA) and a distant wild species, O. officinalis (CC), were backcross to O. sativa. Most of the BC1 progenies were allotriploid (AAC), a few were hypotriploid. AAC progenies were again backcrossed to O. sativa. BC2 progenies consisting of disomic or aneuploid individuals were examined for the presence of O. officinalis traits. Eleven different traits from O. officinalis were identified in these progenies. Segregation data in the subsequent generations suggest that these traits are monogenic in nature. Two of these genes — for resistance to BPH and WBPH — are of value in rice improvement. The extremely low recovery of recombinant progenies is in agreement with the very low amount of pairing between A and C genomes. Because of this restricted recombination, the genotype of the recurrent parent was reconstituted after two backcrosses only. Thus, the BC2 progenies look remarkably similar to O. sativa. Most of them are stable and fertile and also interfertile with other O. sativa breeding lines. Some of the BPH-and WBPH-resistant progenies are comparable in yield to the best O. sativa parents and are being evaluated as varietal possibilities.  相似文献   

6.
7.
Microbial Degradation of Natural Rubber Vulcanizates   总被引:4,自引:2,他引:2       下载免费PDF全文
An actinomycete, Nocardia sp. strain 835A, grows well on unvulcanized natural rubber and synthetic isoprene rubber, but not on other types of synthetic rubber. Not only unvulcanized but also various kinds of vulcanized natural rubber products were more or less utilized by the organism as the sole source of carbon and energy. The thin film from a latex glove was rapidly degraded, and the weight loss reached 75% after a 2-week cultivation period. Oligomers with molecular weights from 104 to 103 were accumulated during microbial growth on the latex glove. The partially purified oligomers were examined by infrared and 1H nuclear magnetic resonance and 13C nuclear magnetic resonance spectroscopy, and the spectra were those expected of cis-1, 4-polyisoprene with the structure, OHC—CH2—[—CH2—C(—CH3)=CH —CH2—]n—CH2—C(=O)— CH3, with average values of n of about 114 and 19 for the two oligomers.  相似文献   

8.
The wild species of the genus Oryza offer enormous potential to make a significant impact on agricultural productivity of the cultivated rice species Oryza sativa and Oryza glaberrima. To unlock the genetic potential of wild rice we have initiated a project entitled the ‘Oryza Map Alignment Project’ (OMAP) with the ultimate goal of constructing and aligning BAC/STC based physical maps of 11 wild and one cultivated rice species to the International Rice Genome Sequencing Project’s finished reference genome – O. sativa ssp. japonica c. v. Nipponbare. The 11 wild rice species comprise nine different genome types and include six diploid genomes (AA, BB, CC, EE, FF and GG) and four tetrapliod genomes (BBCC, CCDD, HHKK and HHJJ) with broad geographical distribution and ecological adaptation. In this paper we describe our strategy to construct robust physical maps of all 12 rice species with an emphasis on the AA diploid O. nivara – thought to be the progenitor of modern cultivated rice.  相似文献   

9.

Key message

We present here the first curated collection of wild and cultivated African rice species. For that, we designed specific SNPs and were able to structure these very low diverse species.

Abstract

Oryza glaberrima, the cultivated African rice, is endemic from Africa. This species and its direct ancestor, O. barthii, are valuable tool for improvement of Asian rice O. sativa in terms of abiotic and biotic stress resistance. However, only a few limited studies about the genetic diversity of these species were performed. In the present paper, and for the first time at such extend, we genotyped 279 O. glaberrima, selected both for their impact in current breeding and for their geographical distribution, and 101 O. barthii, chosen based on their geographic origin, using a set of 235 SNPs specifically designed for African rice diversity. Using those data, we were able to structure the individuals from our sample in three populations for O. barthii, related to geography, and two populations in O. glaberrima; these two last populations cannot be linked however to any currently phenotyped trait. Moreover, we were also able to identify misclassification in O. glaberrima as well as in O. barthii and identified new form of O. sativa from the set of African varieties.  相似文献   

10.
Structural variants (SVs) are a largely unstudied feature of plant genome evolution, despite the fact that SVs contribute substantially to phenotypes. In this study, we discovered SVs across a population sample of 347 high-coverage, resequenced genomes of Asian rice (Oryza sativa) and its wild ancestor (O. rufipogon). In addition to this short-read data set, we also inferred SVs from whole-genome assemblies and long-read data. Comparisons among data sets revealed different features of genome variability. For example, genome alignment identified a large (∼4.3 Mb) inversion in indica rice varieties relative to japonica varieties, and long-read analyses suggest that ∼9% of genes from the outgroup (O. longistaminata) are hemizygous. We focused, however, on the resequencing sample to investigate the population genomics of SVs. Clustering analyses with SVs recapitulated the rice cultivar groups that were also inferred from SNPs. However, the site-frequency spectrum of each SV type—which included inversions, duplications, deletions, translocations, and mobile element insertions—was skewed toward lower frequency variants than synonymous SNPs, suggesting that SVs may be predominantly deleterious. Among transposable elements, SINE and mariner insertions were found at especially low frequency. We also used SVs to study domestication by contrasting between rice and O. rufipogon. Cultivated genomes contained ∼25% more derived SVs and mobile element insertions than O. rufipogon, indicating that SVs contribute to the cost of domestication in rice. Peaks of SV divergence were enriched for known domestication genes, but we also detected hundreds of genes gained and lost during domestication, some of which were enriched for traits of agronomic interest.  相似文献   

11.
The genus Psednotrichia (Asteraceae–Senecioneae) is endemic to Angola and currently consists of two annual species, P. xyridopsis (O. Hoffm.) Anderb. & P. O. Karis, and P. newtonii (O. Hoffm.) Anderb. & P. O. Karis. A perennial member of the genus was collected on a recent field trip to Angola, and is here described as P. perennis N. G. Bergh & B. Nord., sp. nov. A key to the three species is provided.  相似文献   

12.
China is rich of germplasm resources of common wild rice (Oryza rufipogon Griff.) and Asian cultivated rice (O. sativa L.) which consists of two subspecies, indica and japonica. Previous studies have shown that China is one of the domestication centers of O. sativa. However, the geographic origin and the domestication times of O. sativa in China are still under debate. To settle these disputes, six chloroplast loci and four mitochondrial loci were selected to examine the relationships between 50 accessions of Asian cultivated rice and 119 accessions of common wild rice from China based on DNA sequence analysis in the present study. The results indicated that Southern China is the genetic diversity center of O. rufipogon and it might be the primary domestication region of O. sativa. Molecular dating suggested that the two subspecies had diverged 0.1 million years ago, much earlier than the beginning of rice domestication. Genetic differentiations and phylogeography analyses indicated that indica was domesticated from tropical O. rufipogon while japonica was domesticated from O. rufipogon which located in higher latitude. These results provided molecular evidences for the hypotheses of (i) Southern China is the origin center of O. sativa in China and (ii) the two subspecies of O. sativa were domesticated multiple times.  相似文献   

13.
Hemolytic saponin content was determined of the leaves of 1213 plants of different variants ofMedicago sativa s.l. (including wild and cultivated alfalfa), and a close ally,M. papillosa. The latter species had a much higher content than any of the groups ofM. sativa. Medicago sativa ssp. caerulea, the most important ancestor of alfalfa, had a very low content of hemolytic saponins. The most primitive forms of cultivated alfalfa examined, from Turkey, and wildM. sativa ssp. sativa of Turkey, also both had very low contents of hemolytic saponins. This is consistent with, and likely explained by, a direct origin of the two Turkish groups from sympatricM. sativa ssp.caerulea. The second most important ancestor of alfalfa,M. sativa ssp.falcata, had the highest content of any of the examined groups ofM. sativa. Modern “Western” (European, NorthAmerican) cultivars and Western ruderal populations had intermediate levels of hemolytic saponins. This is consistent with, and likely explained by, their origin by hybridization and introgression between the low saponin groups noted above andM. sativa ssp.falcata.  相似文献   

14.
Starch metabolism in the leaf sheaths and culm of rice   总被引:5,自引:1,他引:4       下载免费PDF全文
The levels of starch and dextrin, free sugars, soluble protein, and enzymes involved in starch metabolism—α-amylase, β-amylase, phosphorylase, Q-enzyme, R-enzyme, and ADP-glucose starch synthetases—were assayed in the leaf sheaths and culm of the rice plant (Oryza sativa L., variety IR8) during growth.  相似文献   

15.
Polymorphism over ∼26 kb of DNA sequence spanning 22 loci and one region distributed on chromosomes 1, 2, 3 and 4 was studied in 30 accessions of cultivated rice, Oryza sativa, and its wild relatives. Phylogenetic analysis using all the DNA sequences suggested that O. sativa ssp. indica and ssp. japonica were independently domesticated from a wild species O. rufipogon. O. sativa ssp. indica contained substantial genetic diversity (π = 0.0024), whereas ssp. japonica exhibited extremely low nucleotide diversity (π = 0.0001) suggesting the origin of the latter from a small number of founders. O. sativa ssp. japonica contained a larger number of derived and fixed non-synonymous substitutions as compared to ssp. indica. Nucleotide diversity and genealogical history substantially varied across the 22 loci. A locus, RLD15 on chromosome 2, showed a distinct genealogy with ssp. japonica sequences distantly separated from those of O. rufipogon and O. sativa ssp. indica. Linkage disequilibrium (LD) was analyzed in two different regions. LD in O. rufipogon decays within 5 kb, whereas it extends to ∼50 kb in O. sativa ssp. indica. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Summary Ninety-three accessions representing 21 species from the genus Oryza were examined for restriction fragment length polymorphism. The majority (78%) of the accessions, for which five individuals were tested, were found to be monomorphic. Most of the polymorphic accessions segregated for only one or two probes and appeared to be mixed pure lines. For most of the Oryza species tested, the majority of the genetic variation (83%) was found between accessions from different species with only 17% between accessions within species. Tetraploid species were found to have, on average, nearly 50% more alleles (unique fragments) per individual than diploid species reflecting the allopolyploid nature of their genomes.Classification of Oryza species based on RFLPs matches remarkably well previous classifications based on morphology, hybridization and isozymes. In the current study, four species complexes could be identified corresponding to those proposed by Vaughan (1989): the O. ridleyi complex, the O. meyeriana complex, the O. officinalis complex and the O. sativa complex. Within the O. sativa complex, accessions of O. rufipogon from Asia (including O. nivara) and perennial forms of O. rufipogon from Australia clustered together with accessions of cultivated rice O. sativa. Surprisingly, indica and japonica (the two major subspecies of cultivated rice) showed closer affinity with different accessions of wild O. Rufipogon than to each other, supporting a hypothesis of independent domestication events for these two types of rice. Australian annual wild rice O. meridionalis (previously classified as O. rufipogon) was clearly distinct from all other O. rufipogon accessions supporting its recent reclassification as O. meridionalis (Ng et al. 1981). Using genetic relatedness as a criterion, it was possible to identify the closest living diploid relatives of the currently known tetraploid rice species. Results from these analyses suggest that BBCC tetraploids (O. malampuzhaensis, O. punctata and O. minuta) are either of independent origins or have experienced introgression from sympatric C-genome diploid rice species. CCDD tetraploid species from America (O. latifolia, O. alta and O. grandiglumis) may be of ancient origin since they show a closer affinity to each other than to any known diploid species. Their closest living diploid relatives belong to C genome (O. eichingeri) and E genome (O. Australiensis) species. Comparisons among African, Australian and Asian rice species suggest that Oryza species in Africa and Australia are of polyphyletic origin and probably migrated to these regions at different times in the past.Finally, on a practical note, the majority of probes used in this study detected polymorphism between cultivated rice and its wild relatives. Hence, RFLP markers and maps based on such markers are likely to be very useful in monitoring and aiding introgression of genes from wild rice into modern cultivars.  相似文献   

17.
In the present study, we report a survey on a Miniature Inverted Transposable Element (MITE) system known as mPing in 102 varieties of Asian cultivated rice (Oryza sativa L.). We found that mPing populations could be generalized Into two families, mPing-1 and mPing-2, according to their sequence structures. Further analysis showed that these two families of mPing had significant bias in their distribution pattern in two subspecies of rice, namely O. sativa ssp. japonica and indica. 0. sativa japonica has a higher proportion of mPing-1 as a general trait, whereas 0. sativa indica has a higher proportion of roPing-2. We also examined the mPing system In a doubled haploid (DH) cross-breeding population of jingxi 17 (japonica) and zhaiyeqing 8 (indica) varieties and observed that the mPing system was not tightly linked to major subspecies-determining genes. Furthermore, we checked the mPing system in 28 accessions of Asian common wild rice O. rufipogon and found the roPing system in 0. rufipogon. The distribution pattern of the roPing system in O. rufipogon indicated a diphyletlc origin of the Asian cultivated rice O. sativa species. We did not find the mPing system in another 20 Oryza species. These results substantiated a previous hypothesis that O. ruflpogon and O. nivara species were the closest relatives of O. sativa and that the two extant subspecies of O. sativa were evolved independently from corresponding ecotypes of O. ruflpogon.  相似文献   

18.
Nine monoclonal antibodies to pea (Pisum sativum L.) and 16 to oat (Avena sativa L.) phytochrome are characterized by enzyme-linked immunosorbent assay against phytochrome from six different sources: pea, zucchini (Cucurbita pepo L.), lettuce (Lactuca sativa L.), oat, rye (Secale cereale L.), and barley (Hordeum vulgare L.). All antibodies were raised against phytochrome with a monomer size near 120,000 daltons. Nevertheless, none of them discriminated qualitatively between 118/114-kilodalton oat phytochrome and a photoreversible, 60-kilodalton proteolytic degradation product derived from it. In addition, none of the 23 antibodies tested discriminated substantially between phytochrome—red-absorbing form and phytochrome—far red-absorbing form. Two antibodies to pea and six to oat phytochrome also bound strongly to phytochrome from the other species, even though these two plants are evolutionarily widely divergent. Of these eight antibodies, two bound significantly to all of the six phytochrome preparations tested, indicating that these two may recognize highly conserved regions of the chromoprotein. Since the molecular function of phytochrome is unknown, these two antibodies may serve as unique probes for regions of this pigment that are important to its mode of action.  相似文献   

19.
Background and Aims: Saffron (Crocus sativus) is a sterile triploid (2n = 3x = 24) cultivated species, of unknown origin from other diploid and polyploid species in the genus Crocus (Iridaceae). Species in the genus have high morphological diversity, with no clear phylogenetic patterns below the level of section Crocus series Crocus. Using DNA markers, this study aimed to examine the diversity and relationships within and between species of Crocus series Crocus.Methods: Eleven inter-retroelement amplified polymorphism (IRAP) primers were used in 63 different combinations with 35 single-plant accessions of C. sativus and related Crocus species in order to determine genetic variability and to conduct phylogenetic analysis.Key Results: A total of 4521 distinct polymorphic bands from 100 bp to approx. 4 kb were amplified; no fragment specific to all accessions of a single species was amplified. The polymorphic information content (PIC) values varied from approx. 0·37 to approx. 0·05 (mean 0·17 ± 0·1) and the major allele frequency had a mean of 0·87. High levels of polymorphism were identified between accessions of the six species of Crocus series Crocus related to C. sativus, with further variation between the species. In contrast, no polymorphisms were seen among 17 C. sativus accessions obtained in the region from Kashmir through Iran to Spain.Conclusions In contrast to the intraspecific variability seen in other Crocus species, C. sativus has minimal genetic variation, and it is concluded that the triploid hybrid species has most probably arisen only once. The data show that saffron is an allotriploid species, with the IRAP analysis indicating that the most likely ancestors are C. cartwrightianus and C. pallasii subsp. pallasii (or close relatives). The results may facilitate resynthesizing saffron with improved characteristics, and show the need for conservation and collection of wild Crocus.  相似文献   

20.
The oat (Avena sativa L.) seed globulin was found to be synthesized in vitro as 60,000 to 64,000 dalton precursors. In vivo protein labeling yielded polypeptides of 58,000 to 62,000 daltons, suggesting cleavage of signal sequences from the precursors. Further cleavage is apparently required to separate the α and β polypeptide sequences which are known to form disulfide-linked 53,000 to 58,000 dalton species in the (αβ)6 holoprotein. The data are discussed with respect to analogous synthesis and processing of some legume 11S storage proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号