首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimum superovulatory dose of Folltropin was determined and compared with a standard 28 mg dose of FSH-P in beef heifers. In Experiment 1, mean numbers of corpora lutea (CL) did not differ among the groups treated with 10, 20, 30 or 40 mg Folltropin or FSH-P, and the mean CL number was reduced (P<0.05) only in the 5 mg Folltropin group. Mean numbers of ova/embryos recovered, fertilized and transferable were greater (P<0.05) for the 10, 20 and 30 mg Folltropin groups than for the 5 mg group. The 40 mg Folltropin group and the FSH-P group were intermediate. The percentage of fertilized and transferable embryos did not differ over the dosages used in this experiment. In Experiment 2, mean numbers of CL were greater for the 9, 18 and 36 mg Folltropin groups than for the 4.5 mg group, with the 9 mg group being lower than the 36 mg group (P<0.05). The 18 mg group was intermediate and did not differ. Mean numbers of ova/embryos recovered and fertilized ova were greater for the 9, 18 and 36 mg groups (P<0.05) than for the 4.5 mg group. The percent of fertilized and mean number and percentage of transferable embryos did not differ among treatments. We conclude that Folltropin may be a satisfactory superovulatory replacement for FSH-P and that a dose of 18 to 20 mg Folltropin may be within the optimum superovulatory dosage range for beef heifers. Dosages of Folltropin of more than twice the optimum did not result in deterioration of ova/embryo quality.  相似文献   

2.
A study was designed to evaluate the superovulatory response in the cow when either estradiol 17beta or gonadotrophin releasing hormone (GnRH) was used in a superovulatory regimen with follicle stimulating hormone (FSH-P). Fifty-four cyclic crossbred females were superovulated in replicates between Days 8 and 12 of their cycle. All animals were treated with 28 mg of FSH-P in twice-daily decreasing doses, each receiving 500 mug cloprostenol (PGF) 48 h after initiation of treatment. Group 1 served as FSH-P controls, Group 2 received FSH-P and 400 mug of estradiol 17beta 36 h after PGF, and Group 3 received FSH-P and 250 mug GnRH 48 h after PGF. Inseminations with one vial of frozen semen were done at 12, 24 and 36 h after the onset of estrus. Ova/embryos were collected nonsurgically at Day 7 postestrus. Numbers of corpora lutea (CL) were recorded after palpation per rectum and the recovered ova and embryos were evaluated. All females were bled for endocrine examination. There were no differences in ovarian response among these treatments. Mean total ova/embryos collected in Group 3 was significantly higher than in Groups 1 or 2 (P < 0.05); however, no significant difference existed between groups in the mean numbers of fertilized or transferable embryos. Similarly, no significant differences existed between groups for recovery rate, fertilization rate, or percentage of transferable embryos. Serum estradiol levels were significantly higher at the expected end of ovulation in Group 2, and this tended to be associated with higher fertilization and transferable embryo rates. Furthermore, a significant positive correlation was found to exist between CL numbers and each of the ova/embryo parameters and the estradiol levels at estrus.  相似文献   

3.
Cloprostenol (500 ug) and dinoprost tromethamine (65 mg in three doses) were similarly effective in controlling estrus during superovulation with FSH-P. Estrous response was 97.3% and 99.5%, respectively. Embryo production was the same measured in terms of the number transferable, total, percent transferable and number of ova cleaved. The percent cleaved was higher in the dinoprost group (75.5%) than the cloprostenol group (67.4%, P=0.019). The number (P=0.04) and proportions (P=0.009) of degenerate embryos were higher in the dinoprost group as compared to the cloprostenol group (2.9 and 27.9% vs 2.2 and 20.5%).  相似文献   

4.
In a previous preliminary study, HMG (Pergonal 500 -Serono Italy) was favourably used to induce superovulation in heifers. In the present work, the results of further clinical and endocrinological investigations using another treatment schedule are reported. Both friesian heifers and lactating friesian cows, starting from the 9th-11th day of the cycle, received i.m. two ampoules of Pergonal 500 (75 i.u. FSH and 75 i.u. LH per ampoule) at 0, 12, 24, 36 hours and one ampoule at 48, 60, 72, 84, 96 and 108 hours. At the 72nd hour, all donors received 2 ml of Estrumate (I.C.I.) and, at estrus, 1000 i.u. of HCG (Profasi, Serono) 24 hours apart. Both clinical and endocrinological results showed that all animals responded well to the superovulatory stimulus. No donor gave less than two transferable embryos. The mean number of ovulations (11.66 and 10.36 for heifers and cows respectively), the low individual variability, the low number of persistent follicles, the rate of transferable embryos (67%) and the rapid spontaneous restoration of estrous cycles show that the schedule adopted induced satisfactory superovulation of both heifers and cows in embryo transfer practice.  相似文献   

5.
Gonadotropin releasing hormone (GnRH) was given to 109 cows and heifers during the course of 224 superovulations. Follicle stimulating hormone (FSH) was administered twice daily (5 or 6 mg) for 3.5 to 4 days beginning on any of Days 9 to 14 of the estrous cycle; prostaglandin (45 mg PGF(2)alpha or 750 ug cloprostenol) was given in a split dose on the fourth day. Donor cows and heifers were placed into four groups according to previous superovulation treatments, which consisted of one to three treatments or of no previous treatment. Every other cow or heifer within each of the four subgroups was treated with GnRH (200 mug i.m.) at standing estrus. Only donors that exhibited estrus within 32 to 72 h after the first prostaglandin treatment were used in the study. Animals were inseminated artificially 12 and 24 h after standing estrus was first observed. No differences were noted in the number of ovulations, total ova or transferable embryos recovered from the GnRH or control groups; however, two interactions were detected. Cows given GnRH had fewer palpable corpora lutea than control cows (P < 0.05), but this difference was not seen in heifers. The second interaction was that GnRH seemed to depress ovulation rate in donors not previously superovulated, but this effect was not observed with subsequent superovulations. Cows yielded more total ova than heifers (P < 0.01). There was no difference in return to estrus between GnRH and control groups after a second prostaglandin treatment at the time of embryo recovery. Most donors within each group resumed cycling between 5 and 12 d after embryo recovery.  相似文献   

6.
Mature Holstein heifers were given either a priming dose of follicle-stimulating hormone-pituitary (FSH-P, 10 mg) or saline on Day 2 of the estrous cycle, or no pretreatment. All animals were subsequently given a decreasing dose superovulatory treatment of FSH-P beginning between Days 8 and 14, coupled with an injection of prostaglandin F2a to induce luteolysis. Pretreatment with FSH-P had no effect on the total superovulatory response or on the number of transferable embryos collected at Day 7 of gestation. Comparison of the results of our study with previous reports in the literature may suggest that FSH-priming early in the cycle may be advantageous in promoting superovulation only when the superovulatory response of the population of animals is otherwise weak.  相似文献   

7.
Guay P  Rieger D  Roberge S 《Theriogenology》1988,29(5):1193-1199
Fifty Holstein heifers were each superovulated three times with FSH-P. At 60 h after the first injection of FSH-P, the animals received either prostaglandin F(2alpha), cloprostenol or fenprostalene in random order. A significant decrease in serum progesterone and a significant increase in serum estradiol-17beta were observed within 24 h of prostaglandin injection, but there were no significant differences among the three treatments. Neither were there any significant differences among the treatments with respect to the frequency of nonresponse to FSH-P treatment, nor the total number of ova/embryos collected between Days 6 and 8 of gestation.  相似文献   

8.
Thirty-two beef heifers were induced to superovulate by the administration of follicle stimulating hormone-porcine (FSH-P). All heifers received 32 mg FSH-P (total dose) which was injected twice daily in decreasing amounts for 4 d commencing on Days 8 to 10 of the estrous cycle. Cloprostenol was administered at 60 and 72 h after the first injection of FSH-P. Heifers were observed for estrus every 6 h and were slaughtered at known times between 48 to 100 h after the first cloprostenol treatment. The populations of ovulated and nonovulated follicles in the ovaries were quantified immediately after slaughter. Blood samples were taken at 2-h intervals from six heifers from 24 h after cloprostenol treatment until slaughter and the plasma was assayed for luteinizing hormone (LH) concentrations. The interval from cloprostenol injection to the onset of estrus was 41.3 +/- 1.25 h (n = 20). The interval from cloprostenol injection to the preovulatory peak of LH was 43.3 +/- 1.69 h (n = 6). No ovulations were observed in animals slaughtered prior to 64.5 h after cloprostenol (n = 12). After 64.5 h, ovulation had commenced in all animals except in one animal slaughtered at 65.5 h. The ovulation rate varied from 4 to 50 ovulations. Approximately 80% of large follicles (> 10 mm diameter) had ovulated within 12 h of the onset of ovulation. Onset of ovulation was followed by a dramatic decrease in the number of large follicles (> 10 mm) and an increase in the number of small follicles (相似文献   

9.
Forty-two Holstein heifers were superovulated with FSH-P (total dose, 30 mg) and cloprostenol. Treatment was initiated on Day 3 (Group D3, n = 11), Day 6 (Group D6, n = 11), Day 9 (Group D9, n = 10) or Day 12 (Group D12, n = 10) of the estrous cycle. Heifers were bled daily for serum progesterone and estradiol-17beta determinations and every 6 h for a 48-h duration at the expected time of estrus for luteinizing hormone (LH) assay. Ova and embryos were flushed from the reproductive tracts and the number of corpora lutea (CL) were recorded after slaughter on Day 7 post-estrus. Mean (+/- SEM) numbers of observed CL were higher (P < 0.05) in Group D9 (33.3 +/- 4.8) than in Group D3 (15.3 +/- 3.8), with Group D6 (17.0 +/- 2.9) and Group D12 (23.9 +/- 7.3) being intermediate. Similarly, mean (+/- SEM) numbers of fertilized embryos were highest (P < 0.05) in Group D9 (13.3 +/- 2.2). There was also a nonsignificant trend for the number of transferable embryos to be greatest in Group D9. Neither serum progesterone concentrations 3 d after the LH peak nor peak serum estradiol 17beta concentrations differed among groups, but both were significantly correlated with numbers of observed CL and total ova and embryos.  相似文献   

10.
This study examined the effects of altered serum FSH concentration on subsequent ovarian response to superovulation. Synchronized heifers were assigned randomly on Day 1 of the cycle (estrus = Day 0) to three pretreatment groups that consisted of 6-d of saline (7ml, s.c., b.i.d.; Group I), FSH-P (0.5 mg, i.m., b.i.d.; Group II) or charcoal-extracted bovine follicular fluid (BFF; 7 ml, s.c., b.i.d.; Group III) injections. Superovulation was initiated on Day 7 and consisted of FSH-P in decreasing dosages over 4 d (4,3,2,1 mg; i.m., b.i.d.), with cloprostenol (500 mug) on the morning of the third day. A second replicate with 14 heifers was conducted using the same protocol but twice the pretreatment dosage of FSH-P (1 mg) and BFF (14 ml). Endogenous plasma FSH decreased during BFF and FSH-P pretreatments compared to controls (P < 0.02). Endogenous FSH concentrations in both primed groups (II and III) were similar to control values (Group I) 12 h after the start of superovulation. Basal LH concentrations were not different between pretreatment groups. The interval from cloprostenol treatment to the preovulatory LH surge in Group III was 21.3 and 23.9 h longer (P < 0.0001) than it was in Groups I and II. The postovulation progesterone rise was delayed in Group III. The number of corpora lutea (CL) was lowest in the BFF-primed group (4.2 +/- 0.8) compared with the FSH-primed (7.4 +/- 1.3) and the control (12.0 +/- 1.8; P < 0.003) groups. In the FSH-primed group (0.68 +/- 0.06 cm(3)), CL volumes were larger than in the control group (0.45 +/- 0.03 cm(3)), whereas in the BFF-primed group (0.27 +/- 0.02 cm(3)) CL volumes were smaller compared with the control group (P < 0.0001). Mean FSH concentrations for 48 h preceding superovulation and the number of CL per cow were positively correlated (r = 0.55; P < 0.004; n = 26). We concluded that both FSH-P and BFF pretreatments decreased the superovulatory response of heifers to FSH-P. The mechanism for this would appear to be associated with reduced endogenous FSH prior to the start of superovulation.  相似文献   

11.
Superovulation and embryo recovery from peripubertal Holstein heifers   总被引:1,自引:0,他引:1  
The use of peripubertal donors in embryo transfer (ET) programs presents significant opportunity to accelerate genetic gain in domestic livestock by reducing the generation interval. These studies were designed to evaluate feasibility of superovulation and embryo recovery in peripubertal heifers (starting at 7.8 months of age), and to determine whether subsequent reproductive and lactational performance of donor heifers were impaired. Study 1 utilized 10 pairs of contemporary full-sibling heifers in which one heifer in each pair was assigned to receive a superovulation regimen and her full-sibling contemporary received placebo. Treated heifers were artificially inseminated at estrus and embryos were flushed transcervically 4-6 days later. Based on recovery of oocytes and/or embryos, 9 of 10 heifers responded to the hormonal regimen and 12 total embryos were recovered. Seven embryos (58%) were transferred into recipients resulting in five pregnancies. Control and treated heifers remained in the herd and were bred at a natural estrus by AI at 15 months of age. Lactation records, i.e., 305 days mature equivalent (305 d ME) were obtained, and all animals were evaluated for udder conformation traits between 32 and 38 months of age. Reproductive traits (age at first calving and days to conception) and lactational traits of heifers subjected to embryo transfer and their non-treated full-siblings did not differ (P > 0.05). Study 2 was conducted to establish the commercial feasibility of hormonally programming peripubertal heifers ranging in age from 7.8 to 9.9; 10 to 11.9; 12 to 13.9 and >/= 14 months. In total, 3982 embryos were recovered from 520 heifers, with 2419 (60.7%) of those categorized as viable (transferable). The number of ova/embryos obtained per flush (5.6 +/- 1.0) and the number of transferable embryos (2.8 +/- 0.5) was reduced (P < 0.05) in heifers of age 7.8-9.9 months compared to all other age groups. There was no difference (P > 0.05) in the number of ova/embryos recovered (7.8 +/- 0.3), or the number of transferable embryos (4.8 +/- 0.2), among heifers that were >/=10 months of age. The number of unfertilized ova did not differ by age, however, more degenerate embryos tended to be recovered from heifers <10 months of age compared to heifers >/=14 months of age. These data indicate that transferable embryos can be safely recovered from heifers beginning at 10 months of age without compromising subsequent reproductive or lactational performance of the donor.  相似文献   

12.
The pathogenesis of reproductive loss associated with bovine pestivirus infection during the preovulatory period was investigated using superovulated heifers. Twenty-five Friesian heifers were selected and randomly assigned to either a control group (n = 12) which did not become infected or to a treatment group (n = 13) which became infected following intranasal instillation of 2 ml of serum inoculum containing 5.5 log(10) TCID(50)/ml non-cytopathic virus, 9 d prior to artificial insemination (AI). Transrectal ultrasonography was used to monitor follicular development and ovulation during the superovulatory period. Animals were superovulated using a standard protocol of twice-daily injections of FSH-P and then were inseminated twice commencing 12 h after the onset of estrus. The intensity of expression of estrus was higher in the control heifers than in the pestivirus-infected heifers. Of 13 pestivirus-infected heifers, only 3 heifers displayed standing estrus compared with that in the control group, in which 10 of 12 heifers exhibited standing estrus. The mean number of ova/embryos recovered from the control group heifers was 5.75 +/-2.31, of which 4.00 +/- 0.72 were evaluated as transferable quality embryos. In comparison, heifers in the pestivirus-infected group yielded only a mean of 0.60 +/-0.34 ova/embryos, of which 0.23 +/- 0.22 were transferable quality embryos. Based on ultrasonographic examination, 24 h after the first AI 82% of the presumptive ovulatory follicles had ovulated in the control group compared with an ovulation rate of only 17% in the treated group. The results of this experiment demonstrated that bovine pestivirus infection during the preovulatory period could adversely affect ovulation, thus leading to a significant reduction in the number of palpable corpora lutea and in the number and quality of embryos recovered.  相似文献   

13.
Various superovulation treatments were evaluated retrospectively in a commercial embryo transfer program. When it appeared that embryo production was dependent on the dose of FSH-P, a dose response curve to FSH-P was developed and embryo production compared using several treatment regimes. There was a significant effect of dose of FSH-P on embryo production in superovulated cows. At doses in excess of 28 mg, embryo production declined from 5.9 transferable embryos per collection (28 mg) to 2.7 (60 mg). Total embryos collected declined from 14.9 to 6.8 and the percent transferable from 57% to 40%. There was no advantage in using a five-day treatment over a four-day treatment regimen or in using a level over a declining dose regimen. There was a large individual variation in cow response rendering decisions on treatment changes based on single records unreliable. The percentage of zero collections increased with dose rate. Adoption of a 28-mg dose rate in commercial donors resulted in the embryo production forecast by these studies.  相似文献   

14.
The aim of this study was two-fold: (1). to compare recovery of embryos/ova from superovulated Holstein heifers by flushing the uterine horns through insertion of the catheter very close to the tip of the horn (deep) or just after the uterine bifurcation (shallow) and (2). to evaluate the hormonal and superovulatory response to estradiol benzoate (EB) treatment prior to superovulation. Ten Holstein heifers (12-16 months) underwent two superovulatory treatments in a cross-over design. Heifers were treated with decreasing doses of FSH from Days 8 to 12.5 of a synchronized estrous cycle. At 4 days prior to superovulation, half of the heifers received EB (5mg, i.m.) or served as Controls, followed by the alternative treatment in the subsequent superovulation. At embryo recovery, one uterine horn was flushed with deep ( approximately 7 cm caudal to the tip of the horn) and the other with shallow ( approximately 5 cm cranial to the beginning of the uterine bifurcation) flushing techniques. Embryos/ova were recovered, counted, and scored. Number of ovulations was estimated by ultrasound. Pretreatment with EB reduced circulating FSH and regressed the first wave dominant follicle with no change in number of large follicles, number of ovulations, number of embryos/ova recovered, or number of transferable embryos. The shallow flushing technique was superior to the deep technique for number of embryos/ova recovered per horn (5.4+/-1.1 versus 3.9+/-0.8) or percentage of embryos/ova recovered per CL (63.9+/-8.6% versus 37.4+/-6.5%). Thus, flushing the entire uterine horn increased recovery of embryos/ova.  相似文献   

15.
The aim of this study was to determine the efficiency of a porcine pituitary gonadotrophin extract with a defined pLH content in the superovulation of sheep. Estrus was synchronized in 61 Polish Mountain ewes with intravaginal fluorogestone acetate sponges. Twenty-four hours before the sponges were removed, the ewes underwent different superovulatory treatments: Group I 250 IU of pFSH with 250 IU of pLH (n=19); Group II 500 IU of pFSH with 500 IU of pLH (n=19); and Group III 750 IU of pFSH and 750 IU of pLH (n=18). Gonadotrophine was administered intramuscularly twice a day over a 3-day period in decreasing dosages. A control group of ewes (n=5) was treated with saline. In most of the ewes estrus began about 20 hours after sponges were removed. All the ewes were bred naturally every 12 hours. Superovulation was confirmed in 75% of the treated animals. The ewes receiving 250 IU each of pFSH and pLH produced an average of 7.6 +/- 3.1 corpora lutea (CL), 6.3 +/- 2.4 ova and 4.3 +/- 4.1 transferable embryos. Group II (500 IU of pFSH and pLH) produced 8.5 +/- 4.0 CL, 7.6 +/- 4.1 ova, and 4.1 +/- 2.9 transferable embryos. Group III (750 IU each of pFSH and pLH) produced 8.3 +/- 5.2 CL, 7.5 +/- 5.5 ova and 5.2 +/- 5.1 transferable embryos. The mean embryo recovery rate was 87% for all three groups. Differences in superovulatory response and embryo recovery rate among the groups were not statistically significant (P>0.05).  相似文献   

16.
Transfer of superovulated sheep embryos obtained with different FSH-P   总被引:5,自引:0,他引:5  
Embryo transfer is one way of accelerating genetic improvement in sheep. One of the main obstacles has been the production of good-quality embryos. The use of progestagens and the stimulation of ovulation with follicle stimulating hormone pituitary extract (FSH-P) has permitted the superovulation of donor and recipient ewes and the synchronization of their cycles. The injection of 16 mg FSH-P at the end of progestin treatment gave means of 9 +/- 1.5, 12 +/- 1.5, and 19.5 +/- 2.6 corpora lutea per ewes in the Préalpes, Lacaune, and Romanov x Préalpes breeds respectively (this last breed is particularly prolific). Twenty Préalpes donor ewes produced 133 embryos that were recovered surgically at Day 6 of gestation; of these, 99 morulae were transferable. Forty-five morulae transferred surgically into 24 Préalpes recipient ewes yielded 16 pregnant ewes and 27 lambs (1.7 per ewe). Twenty-two Lacaune ewes yielded 204 embryos, of which 152 morulae were transferable. Of 76 recipients, 58 became pregnant and gave birth to 97 lambs (1.7 per ewe). During anoestrus, the mean ovulation rate decreased from 11.2 to 8.4; 40.6% of the embryos recovered were of transferable quality versus 74.5% during the normal breeding season. An improved superovulation technique, based on the use of FSH-P with a known follicle stimulating hormone to luteinizing hormonal (FSH/LH) ratio, provided us with good-quality embryos. This treatment must be adapted to the season.  相似文献   

17.
Objective of the present study was to investigate the effect of season and dose of FSH on superovulatory responses in Iranian Bos indicus beef cattle (Sistani). Cyclic cows, in summer (n=16) and winter (n=16), were assigned randomly to three dose-treatment groups of 120 (n=10), 160 (n=12) and 200 (n=10) total mg of Folltropin-V with injections given twice daily for 4 days in decreasing doses. Estrous cycles were synchronized with two prostaglandin F2alpha injections given 14 days apart. From day 5 after the ensuing cycle, daily ovarian ultrasonography was conducted to determine emergence of the second follicular wave at which time superovulation was initiated. Relative humidity, environmental and rectal temperatures were measured at 08:00, 14:00 and 20:00 h for the 3 days before and 2 days after the estrus of superovulation. Non-surgical embryo recovery was performed on day 7 after estrus. The effects of season, dose, time of estrous expression and all two-way interactions were evaluated on superovulatory responses: total numbers of CL, unovulated follicles (10 mm), ova/embryo, transferable and non-transferable embryos. Season (summer or winter), doses of Folltropin-V (120, 160 or 200 mg NIH) and time of estrous expression (08:00, 14:00 or 20:00 h) did not affect the number of transferable embryos (3.1+/-0.58). When superovulatory estrus was detected at 08:00, a FSH dose effect was detected with the greatest numbers of CL (12.2+/-0.87) and total ova/embryos (12.2+/-1.46) occurring with 200 mg FSH (dosextime of estrous expression; P<0.01).  相似文献   

18.
Superovulation alone may not be enough to result in developmentally competent oocytes. The objective of this study was to determine if a time interval between FSH administration and slaughter and between slaughter and oocyte recovery could increase the percentage of embryos. Beef heifers (n = 20) were superovulated with 1 bolus injection of 25 mg, im FSH-P diluted in saline and then slaughtered at 24, 48 or 72 h after FSH injection and the ovaries transported to the laboratory at 30 degrees C. For 6 of the heifers that received FSH-P and were then culled at 48 h post treatment, oocytes were recovered 1 to 2 h post slaughter from the first ovary and 4 to 5 h from the second ovary. Ovaries from untreated cows were collected and served as controls. The results indicated that FSH-P and culling at 48 h produced 35% >/= 32-cell embryos, significantly more than FSH-P and culling at 24 and 72 h (19 and 14%, respectively; P < 0.05). Furthermore, FSH-P and culling at 48 h produced 25% >/= 64-cell embryos, significantly more than FSH-P and culling at 24 and 72 h and the nontreatment control group (5, 7 and 15%, respectively; P < 0.05). The FSH-P group culled at 48 h produced more >/= 32-cell embryos, with an average of 84 +/- 5 cells/embryo, than the treated groups culled at 24 and 72 h and the untreated group (52 +/- 6, 60 +/- 5 and 63 +/- 3, respectively; P < 0.01). Finally, oocytes left in the postmortem ovaries for 4 to 5 h resulted in higher rates (51% and 41%) of >/= 32- and >/= 64-cell embryos, respectively, compared with that of the untreated control animals (29 and 18%; P < 0.05), but these rates were not different from oocytes left in ovaries for 1 to 2 h (33 and 24%). It is concluded that culling at 48 h after FSH treatment, as well as the conditioning effect on oocytes in warm postmortem ovaries for 4 to 5 h, increases the number of competent oocytes.  相似文献   

19.
The efficacy of a single intramuscular dose of 450 or 600 international units (IU) of human menopausal gonadotropin (hMG) or 30 mg of follicle stimulating hormone (FSH), each dissolved in 30% polyvinylpyrrolidone K-30 (PVP), for superovulation treatment was compared to that of superovulation induction by administration of a total dose of 600 IU hMG given in declining doses twice daily over a 3-day period. A total of 48 Japanese Black cows were used for the investigation. Oestrus was observed within 60 h after PGF2alpha administration in all cows in the hMG groups. In the hMG group that received a single dose of 600 IU hMG (n = 12), oestrus was observed less than 36 h after treatment in one cow. In contrast, oestrus was not observed in 3 of the 12 cows (25%) in the FSH group. Neither the average number of recovered ova/embryos nor the number of transferable embryos per collection differed significantly among the hMG groups. However, the average number of transferable embryos was not significantly higher in cows treated with a single dose of 600 IU of hMG than in cows treated with a single 30 mg dose of FSH (7.5+/-4.5 vs. 2.1+/-2.8). The number of cows from which more than three excellent grade embryos were collected was highest in the group that received a single dose of 600 IU hMG (9/12, 75%) and lowest in the group that received a single 30 mg dose of FSH (2/9, 22%). The differences between groups in the percentages of cows with three or more excellent embryos between treatments were not statistically significant. The proportion of recovered ova/embryos classified as excellent was highest in the group that received 600 IU hMG in declining doses and lowest in the group that received a single 30 mg dose of FSH (55.2% vs. 30.2%; P < 0.05). The recovery rate of unfertilized ova was lowest in the group that received a single dose of 600 IU hMG and highest in the group received a single 30 mg dose of FSH (18.3% vs. 48.8%; P < 0.05). Although the differences in recovery results between the groups were not statistically significant, the recovery rates in hMG groups were higher than that the FSH group. These findings suggest that superovulation can be induced adequately in Japanese Black cows using one injection of 450 to 600 IU hMG dissolved in PVP.  相似文献   

20.
The objective of this study was to evaluate the utilization of gonadotropin releasing hormone (GnRH) as part of a superovulatory regimen for Zebu cattle. Forty Zebu cows were superovulated with 40 mg of follicle stimulating hormone-pituitary (FSH-P) divided in eight fractions of 5 mg injected at 12-h intervals. Luteolysis was induced with 15 mg of luprostiol injected at 48 h after the first injection of FSH-P. Half of the animals were injected with 200 ug of GnRH 3 h after the onset of standing estrus. The other 20 animals were not injected with GnRH. All the cows were inseminated three times at 12-h intervals, starting at the time of standing estrus. Embryos were recovered nonsurgically 7 d after the last insemination. Palpation per rectum performed immediately after collection of the embryos did not show differences in the number of corpora lutea between groups (P > 0.05). Likewise, there were no significant differences between treatments with respect to the total number of embryos plus ova, total number of embryos, or the number of transferable embryos recovered (P>0.05). The number of blastocysts, morulae, degenerated morulae and unfertilized ova was similar for the two groups. It is concluded that the incorporation of GnRH into a part of the superovulatory treatment for Zebu cattle does not improve the results of such treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号