首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pea (Pisum sativum L.) and bean (Phaseolus vulgaris L.) plants were exposed to enhanced levels of UV-B radiation in a growth chamber. Leaf discs of UV-B treated and control plants were exposed to high-light (HL) stress (PAR: 1200 mol m–2 s–1) to study whether pre-treatment with UV-B affected the photoprotective mechanisms of the plants against photoinhibition. At regular time intervals leaf discs were taken to perform chlorophyll a fluorescence and oxygen evolution measurements to assess damage to the photosystems. Also, after 1 h of HL treatment the concentration of xanthophyll cycle pigments was determined. A significantly slower decline of maximum quantum efficiency of PSII (F v/F m), together with a slower decline of oxygen evolution during HL stress was observed in leaf discs of UV-B treated plants compared to controls in both plant species. This indicated an increased tolerance to HL stress in UV-B treated plants. The total pool of xanthophyll cycle pigments was increased in UV-B treated pea plants compared to controls, but in bean no significant differences were found between treatments. However, in bean plants thiol concentrations were significantly enhanced by UV-B treatment, and UV-absorbing compounds increased in both species, indicating a higher antioxidant capacity. An increased leaf thickness, together with increases in antioxidant capacity could have contributed to the higher protection against photoinhibition in UV-B treated plants.  相似文献   

2.
We studied the short-term impact of sediment load on the photosynthetic performance of Saccharina latissima sporophytes exposed to ultraviolet radiation (UVR). The algae were collected from different sediment-influenced environments in Svalbard in August 2007. Initial optimum quantum yield (F v/F m) of sediment-covered sporophytes was significantly higher compared to sediment-free sporophytes. Experimental sediment coating on blade discs had a photoprotective function by screening out 92% of the weighted UV-B (UVery) treatment. No UVR-induced photoinhibition was observed in sediment-coated blade discs while sediment removal caused a reduction in F v/F m not only after 12-h UVR exposure but also after 6-h recovery in low white light compared to the initial value. Thus, sediment coating has a short-term functional significance in mitigating the negative effect of UVR on photosynthesis of an important kelp species and set a baseline for further studies. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Pulse amplitude modulated (PAM) fluorometry has been suggested as a tool for estimating environmental stresses on corals. However, information regarding natural changes in maximal quantum yields (F v/F m) of corals during “normal” (i.e. non-bleaching) years has been limited. In this study, seasonal variations in F v/F m for Stylophora pistillata and Favia favus, measured in situ, correlated with seasonal changes in solar irradiance but not in sea temperature. Interactions between sea temperature and irradiance were further studied by growing these corals and Pocillopora damicornis under controlled conditions. Exposure to high light with normal or high temperatures resulted in lower F v/F m values than exposure to low light at both temperatures. Thus, high irradiances may cause decreased F v/F m values in corals at least as much as, if not more than, high temperatures. Such seasonal variations should be taken into account when using PAM fluorometry as a diagnostic tool for predicting coral bleaching.  相似文献   

4.
Effects of photoinhibition on photosynthesis in pea (Pisum sativum L.) leaves were investigated by studying the relationship between the severity of a photoinhibitory treatment (measured as Fv/Fm) and several photoacoustic and chlorophyll a fluorescence parameters. Because of the observed linear relationship between the decline of Fv/Fm and the potential oxygen evolution rate determined by the photoacoustic method, the parameter Fv/Fm was used as an indicator for the severity of photoinhibition. Our analysis revealed that part of the Photosystem II (PS II) reaction centers is inactive in oxygen evolution and is also less sensitive to photoinhibition. Correcting the parameter qP (fraction of open PS II reaction centers) for inactive PS II centers unveiled a strong increase of qP in severely inhibited pea leaves, indicating that the inactivated active centers do no longer contribute to qP and that photoinhibition has an all or none effect on PS II centers. Analysis of qE (energy quenching) demonstrated its initial increase possibly associated with dephosphorylation of LHC II. Analysis of qI (photoinhibition dependent quenching) showed that the half-time of recovery of qI increases steeply below an Fv/Fm of 0.65. This increase of the relaxation half-time corresponds with a decrease of the electron transport rate J and tentatively indicates that the supply of ATP, needed for the recovery, starts to decrease. The data indicate the necessity of correcting for inactive centers in order to make valuable conclusions about effects of photoinhibition on photosynthetic parameters.  相似文献   

5.
《Journal of bryology》2013,35(2):148-153
Abstract

Phenotypic variation occurs in many populations of plants. When this variation occurs along an environmental gradient, the immediate question is whether the variation is attributed to phenotypic plasticity, ecotypes, or some combination of the two. The moss Syntrichia caninervis appears morphologically variable along an environmental gradient changing rapidly from low light, low temperature, and high moisture levels in the understory microhabitat to high light, high temperature, and low moisture levels in the intershrub microhabitat. We tested for the presence of physiological variation using recovery from a heat-shock event in a mimicked microhabitat light environment, and for morphological variation using a common garden with the ultimate goal of attributing observed variation to plasticity, genetic variation, or a combination. The results suggest that plasticity plays a large role in trait variation. Photosynthetic recovery depended on the current light levels of an environment and not the original microhabitat. The supposed morphological variation in the field was not reflected in the test traits (awn length, leaf area, and shoot volume) and further growth in a common garden continued to show no variation between microhabitats.  相似文献   

6.
7种秋海棠叶片斑纹结构及遗传特性分析   总被引:1,自引:0,他引:1  
以7种(品种)秋海棠为材料,观察叶片斑区和非斑区组织结构、测定叶绿素含量及叶绿素荧光参数Fv/Fm值,分析叶片斑纹的形成原因及银点秋海棠点状斑的遗传特性。结果显示:(1)银点秋海棠、铺地秋海棠、假厚叶秋海棠、‘皮卡’和‘非洲丛林’叶片斑区的上表皮细胞与栅栏组织细胞间存在空隙,非斑区则没有空隙,彩纹秋海棠和‘虎斑’的斑区与非斑区上表皮细胞和栅栏组织细胞间均紧密相连。(2)7种(品种)秋海棠叶片斑区和非斑区都具有完整的叶绿体超微结构,类囊体膜丰富,基质和基粒片层清晰;银点秋海棠、假厚叶秋海棠、‘皮卡’和‘非洲丛林’斑区的叶绿素a、b及总叶绿素含量均低于非斑区,而铺地秋海棠斑区和非斑区差别不大;除假厚叶秋海棠的斑区叶绿素荧光参数Fv/Fm值小于非斑区外,其余6种秋海棠均为斑区高于非斑区。(3)银点秋海棠与无斑种类杂交,杂交后代叶片有斑和无斑的植株约为1∶1,而其自交后代中有斑和无斑的植株比例近3∶1。研究发现,银点秋海棠、铺地秋海棠、假厚叶秋海棠、‘皮卡’和‘非洲丛林’的叶斑属于空隙结构型,彩纹秋海棠和‘虎斑’叶斑属于色素型。银点秋海棠点状叶斑与无斑是1对可遗传的相对性状,白色点状斑为显性性状。  相似文献   

7.
The present study investigated the dynamics of nutrient utilization and various growth and physiological parameters during in vitro proliferation of apple root stock ‘M9 EMLA’ in two different bioreactor systems, i.e. temporary and continuous immersions. Individual shoots obtained from temporary immersion system had higher dry mass and were of better quality than those obtained from continuous immersion. In continuous immersion bioreactor, apple shoots appeared to utilize more nutrients from liquid culture medium than that from temporary immersion. The shoot growth was limited by the availability of phosphate and nitrogen in continuous immersion system. The shoots produced in temporary immersion bioreactor showed higher photosynthetic rate, maximum quantum yield of photosystem-II and slow but steady rate of nutrient absorption, indicating the occurrence of higher photomixotrophic metabolism. The study also showed that high level of antioxidant scavenging enzymes in shoots grown in continuous immersion system induced physiological changes to foster adaptation to stresses.  相似文献   

8.
The effects of wind speed on loss of water from N. flagelliforme colonies were investigated indoors in an attempt to assess its ecological significance in field. Wind enhanced the process of waterloss; the half-time of desiccation at wind speeds of 2.0 and 3.4 m s-1 was, respectively, shortened to one-third and one-fifth at 20°C and, to one-sixth and one-eighth at 27°C that of still air. Photosynthetic efficiency was not affected before the wet alga lost about 50% water. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
该研究以古林箐秋海棠(Begonia gulinqingensis)为材料,通过分析叶片形态特征、上表皮光学特性、组织结构、叶绿素含量及叶绿素荧光参数(F_v/F_m),探讨了叶片色斑的形成原因。结果表明:(1)古林箐秋海棠叶斑发生频率和数量无明显规律,但发生部位相对稳定,叶斑主要发生在正对叶柄的两条主脉之间。(2)斑区有两种光反射模式,点状反射和多角形反射,栅栏组织细胞呈近等轴的圆形,排列疏松,与上表皮细胞间存在空隙;非斑区只有点状反射模式,栅栏组织细胞为漏斗型,排列紧密,与上表皮细胞间不存在空隙。(3)斑区和非斑区叶绿体均有密集的堆积基粒和丰富的类囊体膜,斑区叶绿素a、b及总叶绿素含量仅比非斑区分别低24.9%、25.2%、25.1%。(4)叶绿素荧光参数(F_v/F_m)值斑区为0.793,非斑区为0.790。虽然斑区叶绿素含量比非斑区略低,但叶绿体结构完整,且叶绿素荧光参数与非斑区无显著差异。斑区上表皮与栅栏组织细胞间的空隙可使光线到达绿色组织时发生二次反射,在叶片表皮细胞边缘形成白色多边形光反射使该区域相对周围正常叶片区域偏白,基于上述结果可推测古林箐秋海棠的淡绿色块斑形成与特殊的叶片结构有关。  相似文献   

10.
A. Hager  K. Holocher 《Planta》1994,192(4):581-589
The formation of zeaxanthin (Zea) from violaxanthin (Vio) in chloroplasts of leaves and algae upon strong illumination is currently suggested to play a role in the photoprotection of plants. Properties and location of the enzyme Vio de-epoxidase, which is responsible for the transformation of Vio to Zea, were studied using thylakoid membrane vesicles isolated from leaves of Spinacia oleracea L. Without using detergents a repeated freeze-thaw treatment of thylakoid vesicles was sufficient to release the enzyme into the medium. With the same procedure the mobile electron carrier plastocyanin, known to occur in the thylakoid lumen, was also released. The enzyme was demonstrated by its activity in the supernatant of the pelleted thylakoid vesicles in the presence of the added substrates Vio and ascorbic acid, as well as by staining of the released proteins after polyacrylamide gel electrophoresis. The release of the deepoxidase from the vesicles was pH-dependent, declined below pH 6.5 and ceased in the pH range around 5, which corresponds to the pH optimum of the enzyme activity. By using thylakoid vesicles isolated from pre-illuminated and therefore Zea-containing leaves the release by freeze-thaw cycles of both the de-epoxidase and plastocyanin was diminished compared with the dark control. However, the reason for this effect was not the Zea content but an unknown effect of the illumination on the thylakoid membrane properties. The de-epoxidase collected at pH 7 was able to re-bind to thylakoid membranes at pH 5.5 and to transform intrinsic Vio to Zea in the presence of ascorbate. The isolated de-epoxidase, as well as the endogenous membrane-bound de-epoxidase, was inhibited by dithiothreitol. From these results it is concluded that Vio de-epoxidase, like plastocyanin, is mobile within the thylakoid lumen at neutral pH values which occur under in-vivo conditions in the dark. However, upon strong illumination, when the lumen pH drops (pH < 6.5) due to the formation of a proton gradient, the properties of the de-epoxidase are altered and the enzyme becomes tightly bound to the membrane (in contrast to plastocyanin) thus gaining access to its substrate Vio. These findings corroborate the assumption of a transmembrane opposite location of the two enzymes of the xanthophyll cycle, the ascorbate-dependent Vio deepoxidase at the lumenal side and the NADPH-dependent Zea epoxidase at the stromal side. Indications in favour of a location of Vio within the lipid bilayer of the thylakoid membrane and of a binding of the active deepoxidase to these areas are discussed.  相似文献   

11.
Light dependency of the photosynthetic recovery of Nostoc flagelliforme   总被引:7,自引:0,他引:7  
PS II photochemical efficiency (Fv/Fm) of Nostoc flagelliforme was examined after rewetting in order to investigate the light-dependency of its photosynthetic recovery. Fv/Fm was not detected in the dark, but was immediately recognized in the light. Different levels of light irradiation (4, 40 and 400 μmol photon m2 s-1) displayed different effects on the recovery process of photosynthesis. The intermediate level led to the best recovery of photochemical efficiency; the low light required longer and the high light inhibited the extent of the recovered efficiency. It was concluded that the photosynthetic recovery of N. flagelliforme is both light-dependent and influenced by photon flux density. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Posters Part 2   总被引:3,自引:0,他引:3  
The effects of different CdCl2 concentrations on the growth and on certain biochemical parameters of almond seedlings (Prunus dulcis) were studied under controlled conditions in the nutrient solutions containing increasing CdCl2 concentrations ranging from 0 to 150 μM CdCl2. Under Cd stress conditions, damage was variable. Cadmium reduced dry matter production in leaves and roots. While chlorophyll content was severely decreased, that of leaf sugars appeared to be increased. Furthermore, leaf nutritional status seemed to be more altered than that of roots. Both in roots and leaves, there was an increase in MDA content as metal concentration increased. It may be suggested from the present study that toxic concentrations of Cd cause oxidative damage as shown by the increase of lipid peroxidation.  相似文献   

13.
Sensitivity to cold and freezing differs between populations within two species of live oaks (Quercus section Virentes Nixon) corresponding to the climates from which they originate. Two populations of Quercus virginiana (originating from North Carolina and north central Florida) and two populations of the sister species, Q. oleoides, (originating from Belize and Costa Rica) were grown under controlled climate regimes simulating tropical and temperate conditions. Three experiments were conducted in order to test for differentiation in cold and freezing tolerance between the two species and between the two populations within each species. In the first experiment, divergences in response to cold were tested for by examining photosystem II (PS II) photosynthetic yield (ΔF/F m′) and non-photochemical quenching (NPQ) of plants in both growing conditions after short-term exposure to three temperatures (6, 15 and 30°C) under moderate light (400 μmol m−2 s−1). Without cold acclimation (tropical treatment), the North Carolina population showed the highest photosynthetic yield in response to chilling temperatures (6°C). Both ecotypes of both species showed maximum ΔF/F m′ and minimum NPQ at their daytime growth temperatures (30°C and 15°C for the tropical and temperate treatments, respectively). Under the temperate treatment where plants were allowed to acclimate to cold, the Q. virginiana populations showed greater NPQ under chilling temperatures than Q. oleoides populations, suggesting enhanced mechanisms of photoprotective energy dissipation in the more temperate species. In the second and third experiments, inter- and intra-specific differentiation in response to freezing was tested for by examining dark-adapted F v/F m before and after overnight freezing cycles. Without cold acclimation, the extent of post-freezing declines in F v/F m were dependent on the minimum freezing temperature (0, −2, −5 or −10°C) for both populations in both species. The most marked declines in F v/F m occurred after freezing at −10°C, measured 24 h after freezing. These declines were continuous and irreversible over the time period. The North Carolina population, however, which represents the northern range limit of Q. virginiana, showed significantly less decline in F v/F m than the north central Florida population, which in turn showed a lower decline in Fv/F m than the two Q. oleoides populations from Belize and Costa Rica. In contrast, after exposure to three months of chilling temperatures (temperate treatment), the two Q. virginiana populations showed no decline in F v/F m after freezing at −10°C, while the two Q. oleoides populations showed declines in F v/F m reaching 0.2 and 0.1 for Costa Rica and Belize, respectively. Under warm growth conditions, the two species showed different F 0 dynamics directly after freezing. The two Q. oleoides populations showed an initial rise in F 0 30 min after freezing, followed by a subsequent decrease, while the Q. virginiana populations showed a continuous decrease in F 0 after freezing. The North Carolina population of Q. virginiana showed a tendency toward deciduousness in response to winter temperatures, dropping 58% of its leaves over the three month winter period compared to only 6% in the tropical treatment. In contrast, the Florida population dropped 38% of its leaves during winter. The two populations of the tropical Q. oleoides showed no change in leaf drop during the 3-months winter (10% and 12%) relative to their leaf drop over the same timecourse in the tropical treatment. These results indicate important ecotypic differences in sensitivity to freezing and cold stress between the two populations of Q. virginiana as well as between the two species, corresponding to their climates of origin.  相似文献   

14.
The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d−1) at salinities up to 50 mM and decreased to less than 0.2 d−1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g−1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt.  相似文献   

15.
The cyclic peptide, cRGDf[N(me)]V, binds to the α v β 3 integrin and can disrupt binding of the integrin to its natural ligands in the extracellular matrix. In this work, the ability of a water-soluble, fluorescently labeled variant of the RGD-containing peptide (cRGDfK-488) to bind to integrins on human umbilical vascular endothelial cells (HUVEC) and subsequently undergo endocytosis was characterized. This information was compared to the binding and uptake properties of an α v β 3 integrin-specific monoclonal antibody, LM609X. The specificity of the RGD-containing peptide is assessed by comparison with control peptide that does not bind to the α v β 3 integrin, cRADfK-488. Using a high purity construct, it is shown that the RGD ligand exhibits dissociation constants in the micromolar range whereas LM609X exhibits dissociation constants in the nanomolar range. However, the RGD ligand showed greater uptake following incubation at temperatures which permit endocytosis. A 7.4-fold increase in uptake of the RGD peptide was observed following a 1 h incubation with HUVEC at 37°C (an endocytosis permissive temperature), as compared to that at 4°C (an endocytosis prohibitive temperature). In contrast, only a 1.9-fold increase in cell-associated fluorescence was observed for similar incubations with LM609X. Results from fluorescence microscopy supports the notion that the RGD peptide is rapidly endocytosed at 37°C as compared to LM609X. These results are discussed with regard to previous work indicating that RGD ligands enter cells by integrin-independent pathways. These studies provide well-controlled measures of how RGD ligands stimulate endocytosis. This may be of considerable interest for intracellular delivery of ligand-associated drugs in anti-angiogenic applications.  相似文献   

16.
A homodimer of b subunits constitutes the peripheral stalk linking the F1 and F0 sectors of the Escherichia coli ATP synthase. Each b subunit has a single-membrane domain. The constraints on the membrane domain have been studied by systematic mutagenesis. Replacement of a segment proximal to the cytoplasmic side of the membrane had minimal impact on F1F0 ATP synthase. However, multiple substitutions on the periplasmic side resulted in defects in assembly of the enzyme complex. These mutants had insufficient oxidative phosphorylation to support growth, and biochemical studies showed little F1F0 ATPase and no detectable ATP-driven proton pumping activity. Expression of the b N2A,T6A,Q10A subunit was also oxidative phosphorylation deficient, but the b N2A,T6A,Q10A protein was incorporated into an F1F0 complex. Single amino acid substitutions had minimal reductions in F1F0 ATP synthase function. The evidence suggests that the b subunit membrane domain has several sites of interaction contributing to assembly of F0, and that these interactions are strongest on the periplasmic side of the bilayer.  相似文献   

17.
Membrane-bound ATP synthases (F1F0) catalyze the synthesis of ATP via a rotary catalyticmechanism utilizing the energy of an electrochemical ion gradient. The transmembrane potentialis supposed to propel rotation of a subunit c ring of F0 together with subunits and of F1,hereby forming the rotor part of the enzyme, whereas the remainder of the F1F0 complexfunctions as a stator for compensation of the torque generated during rotation. This reviewfocuses on our recent work on the stator part of the F0 complex, e.g., subunits a and b. Usingepitope insertion and antibody binding, subunit a was shown to comprise six transmembranehelixes with both the N- and C-terminus oriented toward the cytoplasm. By use of circulardichroism (CD) spectroscopy, the secondary structure of subunit b incorporated intoproteoliposomes was determined to be 80% -helical together with 14% turn conformation, providingflexibility to the second stalk. Reconstituted subunit b together with isolated ac subcomplexwas shown to be active in proton translocation and functional F1 binding revealing the nativeconformation of the polypeptide chain. Chemical crosslinking in everted membrane vesiclesled to the formation of subunit b homodimers around residues bQ37 to bL65, whereas bA32Ccould be crosslinked to subunit a, indicating a close proximity of subunits a and b near themembrane. Further evidence for the proposed direct interaction between subunits a and b wasobtained by purification of a stable ab 2 subcomplex via affinity chromatography using Histags fused to subunit a or b. This ab 2 subcomplex was shown to be active in proton translocationand F1 binding, when coreconstituted with subunit c. Consequences of crosslink formationand subunit interaction within the F1F0 complex are discussed.  相似文献   

18.
The nucleotide sequences of the genes encoding the F1F0-ATPase beta-subunit from Oenococcus oeni, Leuconostoc mesenteroides subsp. mesenteroides, Pediococcus damnosus, Pediococcus parvulus, Lactobacillus brevis and Lactobacillus hilgardii were determined. Their deduced amino acid sequences showed homology values of 79-98%. Data from the alignment and ATPase tree indicated that O. oeni and L. mesenteroides subsp. mesenteroides formed a group well-separated from P. damnosus and P. parvulus and from the group comprises L. brevis and L. hilgardii. The N-terminus of the F1F0-ATPase beta-subunit of O. oeni contains a stretch of additional 38 amino acid residues. The catalytic site of the ATPase beta-subunit of the investigated strains is characterized by the two conserved motifs GGAGVGKT and GERTRE. The amplified atpD coding sequences were inserted into the pCRT7/CT-TOPO vector using TA-cloning strategy and transformed in Escherichia coli. SDS-PAGE and Western blot analyses confirmed that O. oeni has an ATPase beta-subunit protein which is larger in size than the corresponding molecules from the investigated strains.  相似文献   

19.
Genoud  C.  Coudret  A.  Amalric  C.  Sallanon  H. 《Photosynthetica》1999,36(1-2):243-251
Rosa hybrida plantlets were rooted on solid sucrosed medium (MS) under an irradiance (PPFD) of 45 μmol m-2 s-1 or on liquid hydroponic solution (MH) at 100 μmol m-2 s-1. Then all plantlets were acclimated without sucrose under 100 μmol m-2 s-1 PPFD. After 7 d in rooting stage, the ratio of variable over maximal chlorophyll fluorescence (Fv/Fm) was significantly higher for plants grown in MH than in MS and hence the higher irradiance at this stage of growth had no photoinhibitory effect. The radiant energy was used by the photochemical process and also by photoprotective mechanisms of photosystem 2, expressed by increases in the rates of electron flux, net photosynthesis, and non-photochemical quenching. This effect on Fv/Fm was maintained during three weeks in acclimation phase. The resistance of plantlets increased as new leaves formed, and after six weeks in acclimation, there was no difference between the two conditions. The study under higher irradiance (100, 150, or 300 μmol m-2 s-1) indicated that photoinhibition might take place at 300 μmol m-2 s-1 whatever the growth conditions. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
Toxic Microcystis blooms frequently occur in eutrophic water bodies and exist in the form of colonial and unicellular cells. In order to understand the mechanism of Microcystis dominance in freshwater bodies, the physiological and biochemical responses of unicellular (4 strains) and colonial (4 strains) Microcystis strains to phosphorus (P) were comparatively studied. The two phenotype strains exhibit physiological differences mainly in terms of their response to low P concentrations. The growth of four unicellular and one small colonial Microcystis strain was significantly inhibited at a P concentration of 0.2 mg l−1; however, that of the large colonial Microcystis strains was not inhibited. The results of phosphate uptake experiments conducted using P-starved cells indicated that the colonial strains had a higher affinity for low levels of P. The unicellular strains consumed more P than the colonial strains. Alkaline phosphatase activity in the unicellular strains was significantly induced by low P concentrations. Under P-limited conditions, the oxygen evolution rate, F v/F m, and ETR max were lower in unicellular strains than in colonial strains. These findings may shed light on the mechanism by which colonial Microcystis strains have an advantage with regard to dominance and persistence in fluctuating P conditions. Handling editor: L. Naselli-Flores  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号