首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown previously that agonistic anti-CD40 mAb induced T cell-independent antitumor effects in vivo. In this study, we investigated mechanisms of macrophage activation with anti-CD40 mAb treatment, assessed by the antitumor action of macrophages in vitro. Intraperitoneal injection of anti-CD40 mAb into C57BL/6 mice resulted in activation of peritoneal macrophages capable of suppressing B16 melanoma cell proliferation in vitro, an effect that was greatly enhanced by LPS and observed against several murine and human tumor cell lines. Anti-CD40 mAb also primed macrophages in vitro to mediate cytostatic effects in the presence of LPS. The tumoristatic effect of CD40 ligation-activated macrophages was associated with apoptosis and killing of tumor cells. Activation of macrophages by anti-CD40 mAb required endogenous IFN-gamma because priming of macrophages by anti-CD40 mAb was abrogated in the presence of anti-IFN-gamma mAb, as well as in IFN-gamma-knockout mice. Macrophages obtained either from C57BL/6 mice depleted of T and NK cells by Ab treatment, or from scid/beige mice, were still activated by anti-CD40 mAb to mediate cytostatic activity. These results argued against the role of NK and T cells as the sole source of exogenous IFN-gamma for macrophage activation and suggested that anti-CD40 mAb-activated macrophages could produce IFN-gamma. We confirmed this hypothesis by detecting intracytoplasmic IFN-gamma in macrophages activated with anti-CD40 mAb in vivo or in vitro. IFN-gamma production by macrophages was dependent on IL-12. Taken together, the results show that murine macrophages are activated directly by anti-CD40 mAb to secrete IFN-gamma and mediate tumor cell destruction.  相似文献   

2.
We assessed the effect of the stimulatory anti-CD40 Ab on NK cell activation in vivo and the therapeutic potential of activated NK cells in tumor-bearing mice. Single-dose i.p. injection of the anti-CD40 Ab resulted in production of IL-12 and IFN-gamma in vivo, followed by a dramatic increase in NK cell cytolytic activity in PBLs. NK cell activation by anti-CD40 Ab was also observed in CD40 ligand knockout mice. Because NK cells express CD40 ligand but not CD40, our results suggest that NK activation is mediated by increased cytokine production upon CD40 ligation of APCs. Treatment of tumor-bearing mice with anti-CD40 Ab resulted in substantial antitumor and antimetastatic effects in three tumor models. Depletion of NK cells with anti-asialo GM1 Ab reduced or abrogated the observed antitumor effects in all the tested models. These results indicate that a stimulatory CD40 Ab indirectly activates NK cells, which can produce significant antitumor and antimetastatic effects.  相似文献   

3.
Elimination of malignant cells and intracellular infections involves collaboration between CTLs and Th1 inflammation. Dendritic cells drive this response via costimulation and cytokines. We have defined key signals required for the exponential expansion of specific CD8(+) T cells in vivo in mice. Immunization with two or more TLR agonists, anti-CD40, IFN-gamma, and surfactant were sufficient to drive unprecedented levels of CD8 response to peptide or protein Ag and highly polarized Th1 CD4 responses. CD40 signaling was required for CD8 expansion but could be provided by a concomitant CD4 Th response in place of anti-CD40. Triggering of these pathways activated migration and activation of myeloid and plasmacytoid dendritic cells and secretion of IL-12. Cross-presentation can thus be exploited to induce potent cytotoxic responses and long-term memory to peptide/protein Ags. When combined with a tumor-associated peptide from tyrosinase-related protein 2, our combined adjuvant approach effectively halted tumor growth in an in vivo melanoma model and was more effective than anti-CD40 and a single TLR agonist. Antitumor immunity was associated with long-lived effector memory CD8 cells specific for the naturally processed and presented tumor Ag, and tumor protection was partially but not entirely dependent on CD8 T cells. This flexible strategy is more effective than existing adjuvants and provides a technological platform for rapid vaccine development.  相似文献   

4.
The detection of microbial molecules via Toll-like receptors (TLR) in B cells is not well characterized. In this study, we found that both naive and memory B cells lack TLR4 (receptor for LPS) but express TLR9 (receptor for CpG motifs) and produce IL-6, TNF-alpha, and IL-10 upon stimulation with CpG oligonucleotides (ODN), synthetic mimics of microbial DNA. Consistent with the lack of TLR4, purified B cells failed to respond to LPS. Similar to CpG ODN, CD40 ligand (CD40L) alone induced IL-6, TNF-alpha, and IL-10. Production of these cytokines as well as IgM synthesis was synergistically increased when both CpG ODN and CD40L were combined. Unlike IL-6, TNF-alpha, and IL-10, the Th1 cytokine IL-12p70 was detected only when both CpG ODN and CD40L were present, and its induction was independent of B cell receptor cross-linking. CpG ODN did not increase the capacity of CD40L-activated B cells to induce proliferation of naive T cells. However, B cells activated with CpG ODN and CD40L strongly enhanced IFN-gamma production in developing CD4 T cells via IL-12. Together, these results demonstrate that IL-12p70 production in human B cells is under the dual control of microbial stimulation and T cell help. Our findings provide a molecular basis for the potent adjuvant activity of CpG ODN to support humoral immune responses observed in vivo, and for the limited value of LPS.  相似文献   

5.
Tumor growth is often accompanied by the accumulation of myeloid cells in the tumors and lymphoid organs. These cells can suppress T cell immunity, thereby posing an obstacle to T cell-targeted cancer immunotherapy. In this study, we tested the possibility of activating tumor-associated myeloid cells to mediate antitumor effects. Using the peritoneal model of B16 melanoma, we show that peritoneal cells (PEC) in tumor-bearing mice (TBM) had reduced ability to secrete nitric oxide (NO) following in vitro stimulation with interferon gamma and lipopolysaccharide, as compared to PEC from control mice. This reduced function of PEC was accompanied by the influx of CD11b(+) Gr-1(+) myeloid cells to the peritoneal cavity. Nonadherent PEC were responsible for most of the NO production in TBM, whereas in na?ve mice NO was mainly secreted by adherent CD11b(+) F4/80(+) macrophages. Sorted CD11b(+) Gr-1(-) monocytic and CD11b(+) Gr-1(+) granulocytic PEC from TBM had a reduced ability to secrete NO following in vitro stimulation (compared to na?ve PEC), but effectively suppressed proliferation of tumor cells in vitro. In vivo, treatment of mice bearing established peritoneal B16 tumors with anti-CD40 and CpG resulted in activation of tumor-associated PEC, reduction in local tumor burden and prolongation of mouse survival. Inhibition of NO did not abrogate the antitumor effects of stimulated myeloid cells. Taken together, the results indicate that in tumor-bearing hosts, tumor-associated myeloid cells can be activated to mediate antitumor effects.  相似文献   

6.
It has been reported that ligation of CD40 with CD40 ligand (CD40L) results in microglial activation as evidenced by p44/42 mitogen-activated protein kinase (MAPK) dependent tumor necrosis factor alpha (TNF-alpha) production. Previous studies have shown that CD45, a functional transmembrane protein-tyrosine phosphatase, is constitutively expressed at moderate levels on microglial cells and this expression is greatly elevated on activated microglia. To investigate the possibility that CD45 might modulate CD40L-induced microglial activation, we treated primary cultured microglial cells with CD40L and anti-CD45 antibody. Data show that cross-linking of CD45 markedly inhibits CD40L-induced activity of the Src family kinases Lck and Lyn. Further, co-treatment of microglia with CD40L and anti-CD45 antibody results in significant inhibition of microglial TNF-alpha production through inhibition of p44/42 MAPK activity, a downstream signaling event resulting from Src activation. Accordingly, primary cultured microglial cells from mice deficient in CD45 demonstrate hyper-responsiveness to ligation of CD40, as evidenced by increased p44/42 MAPK activation and TNF-alpha production. Taken together, these results show that CD45 plays a novel role in suppressing CD40L-induced microglial activation via negative regulation of the Src/p44/42 MAPK cascade.  相似文献   

7.
Ligation of CD40 has been shown to induce/stimulate the expression of tumor necrosis factor-alpha (TNF-alpha) in microglial cells. This study delineates the mechanism by which CD40 ligation regulates the expression of TNF-alpha in BV-2 microglial cells. There was very little induction of TNF-alpha by ligation of CD40 alone by either cross-linking antibodies against CD40 or recombinant CD40 ligand (CD154). The absence of any increase in TNF-alpha production by CD40 ligation alone even in CD40-overexpressed BV-2 microglial cells suggest that signal transduced by the ligation of CD40 alone is not sufficient for strong induction of TNF-alpha. However, CD40 ligation markedly induced the production of TNF-alpha as well as the expression of TNF-alpha mRNA in interferon-gamma (IFN-gamma)-stimulated BV-2 glial cells. Ligation of CD40 in CD40-overexpressed cells markedly enhanced the expression of TNF-alpha in the presence of IFN-gamma. To understand the mechanism of CD40 ligation-mediated induction/stimulation of TNF-alpha, we investigated the role of nuclear factor-kappaB (NF-kappaB) and C/EBPbeta. IFN-gamma alone was able to induce the activation of NF-kappaB as well as C/EBPbeta. However, CD40 ligation alone in the presence or absence of CD40 overexpression induced the activation of only NF-kappaB and not that of C/EBPbeta, suggesting that the activation of NF-kappaB alone by CD40 ligation is not sufficient to induce the expression of TNF-alpha and that the activation of C/EBPbeta is also necessary for strong induction of TNF-alpha. Consistently, a dominant-negative mutant of p65 (Delta(p65)) and that of C/EBPbeta (DeltaC/EBPbeta) inhibited the expression of TNF-alpha in BV-2 microglial cells stimulated with the combination of IFN-gamma and CD40 ligand. Taken together, these studies suggest that activation of both NF-kappaB and C/EBPbeta is important for strong induction of TNF-alpha and that CD40 ligation regulates the expression of TNF-alpha by modulating the activation of only NF-kappaB but not that of C/EBPbeta.  相似文献   

8.
CD40, a member of the TNFR superfamily, is expressed on a variety of host immune cells, as well as some tumors. In this study, we show that stimulation of CD40 expressed on both mouse and human renal carcinoma cells (RCCs) triggers biological effects in vitro and in vivo. Treatment of the CD40+ Renca mouse RCC tumor cells in vitro with an agonistic anti-CD40 Ab induced strong expression of the genes and proteins for GM-CSF and MCP-1, and induced potent chemotactic activity. Similarly, administration of alphaCD40 to both wild-type and CD40-/- mice bearing Renca tumors resulted in substantial amounts of TNF-alpha and MCP-1 in the serum, increased the number of total splenocytes and MHC class II+ CD11c+ leukocytes, and when combined with IFN-gamma, inhibited the progression of established Renca tumors in vivo in both wild-type and CD40-/- mice. Similarly, treatment of CD40+ A704 and ACHN human RCC lines with mouse anti-human CD40 Ab induced strong expression of genes and proteins for MCP-1, IL-8, and GM-CSF in vitro and in vivo. Finally, in SCID mice, the numbers of ACHN pulmonary metastases were dramatically reduced by treatment with species-specific human CD40 Ab. These results show that CD40 stimulation of CD40+ tumor cells can enhance immune responses and result in antitumor activity.  相似文献   

9.
Valpha14 NKT cells produce large amounts of IFN-gamma and IL-4 upon recognition of their specific ligand alpha-galactosylceramide (alpha-GalCer) by their invariant TCR. We show here that NKT cells constitutively express CD28, and that blockade of CD28-CD80/CD86 interactions by anti-CD80 and anti-CD86 mAbs inhibits the alpha-GalCer-induced IFN-gamma and IL-4 production by splenic Valpha14 NKT cells. On the other, the blockade of CD40-CD154 interactions by anti-CD154 mAb inhibited alpha-GalCer-induced IFN-gamma production, but not IL-4 production. Consistent with these findings, CD28-deficient mice showed impaired IFN-gamma and IL-4 production in response to alpha-GalCer stimulation in vitro and in vivo, whereas production of IFN-gamma but not IL-4 was impaired in CD40-deficient mice. Moreover, alpha-GalCer-induced Th1-type responses, represented by enhanced cytotoxic activity of splenic or hepatic mononuclear cells and antimetastatic effect, were impaired in both CD28-deficient mice and CD40-deficient mice. In contrast, alpha-GalCer-induced Th2-type responses, represented by serum IgE and IgG1 elevation, were impaired in the absence of the CD28 costimulatory pathway but not in the absence of the CD40 costimulatory pathway. These results indicate that CD28-CD80/CD86 and CD40-CD154 costimulatory pathways differentially contribute to the regulation of Th1 and Th2 functions of Valpha14 NKT cells in vivo.  相似文献   

10.
CD154 (CD40 ligand, gp39) interaction with its receptor CD40 has been shown to be critically important for the generation of cell-mediated as well as humoral immunity. It has been proposed that ligation of CD40 on APCs, presumably by activated Th cells, leads to increased APC function as defined by up-regulation of costimulatory molecules and enhancement of IL-12 production. In this report, we directly examined the contribution of the CD154:CD40 pathway in a murine model of allograft rejection. Generation of both the CTL and alloantibody responses following injection with allogeneic P815 tumor cells was severely compromised in CD154 knockout mice and wild-type C57BL/6 mice treated with the anti-CD154 mAb, MR1. Splenic production of IL-2, IFN-gamma, and TNF was significantly suppressed from CD154-deficient mice, indicating a lack of T cell priming. However, splenic cells from CD154 knockout mice induced comparable levels of CD86 expression and IL-12 production when compared with their wild-type littermates. The treatment of CD154-/- mice with the agonistic anti-CD40 mAb, FGK45, generated activated APCs yet failed to restore either the CTL or alloantibody responses to P815. Likewise, immunization with B7-transfected P815 tumor cells failed to generate expansion of the CTL effector population in CD154-/- mice. These results suggest that the generation of allograft immunity is dependent on the interaction of CD154 with CD40 but not primarily for the activation of APCs.  相似文献   

11.
During cognate interaction with CD40 ligand (CD154)-expressing T cells, Ag-presenting accessory cells are activated for increased cytokine synthetic and costimulatory function. We examined whether CD40 modulates in vivo innate immune function over time, hypothesizing that distinct cytokine responses evolve to delayed microbial exposure. C3H/HeN mice pretreated with activating anti-CD40 Ab (FGK45) produced 10-fold more serum IFN-gamma and IL-12 p70 to delayed, but not synchronous, challenge with LPS. A novel finding was that LPS-induced IFN-alpha increased by 20-fold in mice pretreated for 24 h, but not 6 h or less, with anti-CD40. Anti-CD40-pretreated C57BL/6 RAG-2(-/-) mice similarly increased IFN-alpha responses to delayed LPS challenge, confirming mediation by innate immunity. Type I IFNR- and IFN-gamma-deficient mice treated with anti-CD40 failed to expand serum IFN-alpha responses to LPS challenge. Combined pretreatment with anti-CD40 and anti-IFN-gamma mAb showed that IFN-gamma produced after anti-CD40 pretreatment, but before LPS challenge, was necessary for IFN-alpha synthetic enhancement. Anti-CD40 also increased polyinosinic-polycytidylic acid (poly(I:C))-inducible IFN-alpha by 5-fold in an IFN-gamma-dependent fashion, but did not significantly increase IFN-alpha production to CpG or Pam(3)Cys challenges. Poly(IC)-stimulated splenocytes from anti-CD40-pretreated mice produced 4-fold more IFN-alpha than controls and production associated with CD11c(+) cells. Finally, rIFN-gamma and anti-CD40 combined synergistically to increase poly(IC)-inducible IFN-alpha synthetic capacity in bone marrow dendritic cells. We conclude that innate immune production of IFN-alpha is cooperatively regulated by CD40 and IFN-gamma acting on dendritic cells, suggesting a unique mechanism by which innate immune function evolves in response to specific adaptive immune signals.  相似文献   

12.
In allogeneic tumor or skin transplantation, the rejection process that destroys the allogeneic cells leaves syngeneic cells intact by discrimination between self and nonself. Here, we examined whether the cells infiltrating into the allografts could be cytotoxic against syngeneic immortal cells in vitro and in vivo. The leukocytes (i.e., macrophages (Mphi; 55-65% of bulk infiltrates), granulocytes (20-25%), and lymphocytes (15-20%)) infiltrating into allografts, but not into autografts, in C57BL/6 mice were cytotoxic against syngeneic tumor cells and cell lines, whereas the cytotoxic activity was hardly induced in allografted, IFN-gamma-/- C57BL/6 mice. Among the leukocytes, Mphi were the major population of cytotoxic cells; and the cytotoxic activity appeared to be cell-to-cell contact dependent. When syngeneic tumor cells were s.c. injected into normal C57BL/6 mice simultaneously with the Mphi-rich population or allogeneic, but not syngeneic, fibroblastic cells, tumor growth was suppressed in a cell number-dependent manner, and tumor cells were rejected either with a Mphi:tumor ratio of about 30 or with an allograft:tumor ratio of approximately 200. In the case of IFN-gamma-/- C57BL/6 mice, however, the s.c. injection of the allograft simultaneously with tumor cells had no effect on the tumor growth. These results suggest that allograft or allograft-induced Mphi may be applicable for use in cancer treatment and that IFN-gamma induction by the allograft may be crucial for the treatment.  相似文献   

13.
We investigated whether secretion of multiple cytokines by CD8+ T cells is associated with improved protection against tumor challenge. We show that antitumor immunity induced by immunization with dendritic cells and a MHC class I-binding tumor peptide are dependent on secretion of IFN-gamma but not IL-4 or IL-5 by host cells. To further address the role of IL-4 and IL-5 in antitumor immunity, tumor-specific TCR-transgenic CD8+ T cells were activated in vitro to generate cytotoxic T (Tc) 1 cells that secrete high IFN-gamma and no IL-4 or IL-5 or Tc2 cells that secrete IL-4, IL-5, and some IFN-gamma. Both cell types killed target cells in vitro. Tc1 and Tc2 cells were adoptively transferred into syngeneic hosts, and their ability to protect against tumor challenge was compared. Tc1 cells were able to significantly delay tumor growth, whereas Tc2 cells or Tc2 cells from IFN-gamma(-/-) donors had no effect. This was due to neither the inability of Tc2 cells to survive in vivo or to migrate to the tumor site nor their inability to secrete IL-4 and/or IL-5 in the presence of limiting amounts of anti-CD3. However, IFN-gamma secretion by Tc2 cells was triggered inefficiently by restimulation with Ag compared with anti-CD3. We conclude that the ability to secrete "type 2" cytokines, and cytotoxic ability, have a limited role in antitumor immune responses mediated by CD8+ T cells, whereas the capacity to secrete high amounts of IFN-gamma remains the most critical antitumor effector mechanism in vivo.  相似文献   

14.
Ag-induced B cell proliferation in vivo requires a costimulatory signal through CD40, whereas B cell Ag receptor (BCR) ligation by anti-Ig H chain Abs, such as anti-Ig micro H chain Ab and anti-Ig delta H chain Ab, alone induces proliferation of B cells in vitro, even in the absence of CD40 ligation. In this study, we demonstrate that CD40 signaling is required for survival and proliferation of B cells stimulated by protein Ags in vitro as well as in vivo. This indicates that the in vitro system represents B cell activation in vivo, and that protein Ags generate BCR signaling distinct from that by anti-Ig H chain Abs. Indeed, BCR ligation by Ags, but not by anti-Ig H chain Abs, efficiently phosphorylates the inhibitory coreceptors CD22 and CD72. When these coreceptors are activated, anti-Ig H chain Ab-stimulated B cells can survive and proliferate only in the presence of CD40 signaling. Conversely, treatment of Ag-stimulated B cells with anti-CD72 mAb blocks CD72 phosphorylation and induces proliferation, even in the absence of CD40 signaling. These results strongly suggest that activation of B cells by anti-Ig H chain Abs involves their ability to silence the inhibitory coreceptors, and that the inhibitory coreceptors install requirement of CD40 signaling for survival and proliferation of Ag-stimulated B cells.  相似文献   

15.
Physiologic control of IDO competence in splenic dendritic cells   总被引:1,自引:0,他引:1  
Dendritic cells (DCs) competent to express the regulatory enzyme IDO in mice are a small but distinctive subset of DCs. Previously, we reported that a high-dose systemic CpG treatment to ligate TLR9 in vivo induced functional IDO exclusively in splenic CD19(+) DCs, which stimulated resting Foxp3-lineage regulatory T cells (Tregs) to rapidly acquire potent suppressor activity. In this paper, we show that IDO was induced in spleen and peripheral lymph nodes after CpG treatment in a dose-dependent manner. Induced IDO suppressed local T cell responses to exogenous Ags and inhibited proinflammatory cytokine expression in response to TLR9 ligation. IDO induction did not occur in T cell-deficient mice or in mice with defective B7 or programmed death (PD)-1 costimulatory pathways. Consistent with these findings, CTLA4 or PD-1/PD-ligand costimulatory blockade abrogated IDO induction and prevented Treg activation via IDO following high-dose CpG treatment. Consequently, CD4(+)CD25(+) T cells uniformly expressed IL-17 shortly after TLR9 ligation. These data support the hypothesis that constitutive interactions from activated T cells or Tregs and IDO-competent DCs via concomitant CTLA4→B7 and PD-1→PD-ligand signals maintain the default potential to regulate T cell responsiveness via IDO. Acute disruption of these nonredundant interactions abrogated regulation via IDO, providing novel perspectives on the proinflammatory effects of costimulatory blockade therapies. Moreover, interactions between IDO-competent DCs and activated T cells in lymphoid tissues may attenuate proinflammatory responses to adjuvants such as TLR ligands.  相似文献   

16.
Administration of anti-CD25 mAb before an aggressive murine breast tumor inoculation provoked effective antitumor immunity. Compared with CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that did not reject tumor, CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that rejected tumor stimulated by dendritic cells (DCs) produced more IFN-gamma and IL-2, and less IL-17 in vitro, and ignited protective antitumor immunity in vivo in an adoptive transfer model. Tumor Ag-loaded DCs activated naive CD8(+) T cells in the presence of these CD4(+) T cells in vitro. Tumor Ag and adoptively transferred CD4(+) T cells were both required for inducing a long-term tumor-specific IFN-gamma-producing cellular response and potent protective antitumor activity. Although adoptively transferred CD4(+) T cells ignited effective tumor-specific antitumor immunity in wild-type mice, they failed to do so in endogenous NK cell-depleted, Gr-1(+) cell-depleted, CD40(-/-), CD11c(+) DC-depleted, B cell(-/-), CD8(+) T cell-depleted, or IFN-gamma(-/-) mice. Collectively, the data suggest that adoptively transferred CD4(+) T cells orchestrate both endogenous innate and adaptive immunity to generate effective tumor-specific long-term protective antitumor immunity. The data also demonstrate the pivotal role of endogenous DCs in the tumor-specific protection ignited by adoptively transferred CD4(+) T cells. Thus, these findings highlight the importance of adoptively transferred CD4(+) T cells, as well as host immune components, in generating effective tumor-specific long-term antitumor activity.  相似文献   

17.
18.
19.
Brucella abortus is a facultative intracellular bacterium that infects humans and domestic animals. The enhanced susceptibility to virulent B. abortus observed in MyD88 knockout (KO) mice led us to investigate the mechanisms involved in MyD88-dependent immune responses. First, we defined the role of MyD88 in dendritic cell (DC) maturation. In vitro as well as in vivo, B. abortus-exposed MyD88 KO DCs displayed a significant impairment on maturation as observed by expression of CD40, CD86, and MHC class II on CD11c+ cells. In addition, IL-12 and TNF-alpha production was totally abrogated in MyD88 KO DCs and macrophages. Furthermore, B. abortus-induced IL-12 production was found to be dependent on TLR2 in DC, but independent on TLR2 and TLR4 in macrophages. Additionally, we investigated the role of exogenous IL-12 and TNF-alpha administration on MyD88 KO control of B. abortus infection. Importantly, IL-12, but not TNF-alpha, was able to partially rescue host susceptibility in MyD88 KO-infected animals. Furthermore, we demonstrated the role played by TLR9 during virulent B. abortus infection. TLR9 KO-infected mice showed 1 log Brucella CFU higher than wild-type mice. Macrophages and DC from TLR9 KO mice showed reduced IL-12 and unaltered TNF-alpha production when these cells were stimulated with Brucella. Together, these results suggest that susceptibility of MyD88 KO mice to B. abortus is due to impaired DC maturation and lack of IL-12 synthesis. Additionally, DC activation during Brucella infection plays an important regulatory role by stimulating and programming T cells to produce IFN-gamma.  相似文献   

20.
Ligation of CD40 on dendritic cells (DC) triggers production of IL-12. Using an adoptive transfer model we have previously shown that rIL-12 acts directly on DC to enhance presentation of an otherwise poorly immunogenic tumor peptide. Using the same experimental model, we now describe a similar adjuvanticity of CD40 ligation on peptide presentation by DC. We also explore the possibility that the IL-12 resulting from CD40 ligation directly affects the APC function of DC, mediating or contributing to the adjuvant effect of CD40 ligation. CD40 engagement in vitro and rIL-12 at concentrations in the range induced by CD40 ligation were equally effective in priming DC for presentation of the tumor peptide in vivo. Remarkably, the copresence in vitro of neutralizing Ab to IL-12, but not to TNF-alpha, IL-1beta, or IFN-gamma, ablated the enhancing effect of CD40 engagement on the APC function of DC. These data suggest a major role for autocrine IL-12 in DC modulation via CD40 ligation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号