首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In the periphery, IL-18 synergistically induces the expression of the Th1 cytokine IFN-gamma in the presence of IL-12 and the Th2 cytokines IL-5 and IL-13 in the presence of IL-2. Although the expression of these cytokines has been described in the thymus, their role in thymic development and function remains uncertain. We report here that freshly isolated thymocytes from C57BL/6 and BALB/c mice stimulated in vitro with IL-2-plus-IL-18 or IL-12-plus-IL-18 produce large amounts of IFN-gamma and IL-13. Analysis of the thymic subsets, CD4(-)CD8(-) (DN), CD4(+)CD8(+), CD4(+)CD8(-), and CD4(-)CD8(+) revealed that IL-18 in combination with IL-2 or IL-12 induces IFN-gamma and IL-13 preferentially from DN cells. Moreover, DN2 and DN3 thymocytes contained more IFN-gamma(+) cells than cells in the later stage of maturation. Additionally, IL-18 in combination with IL-2 induces CCR4 (Th2-associated) and CCR5 (Th1-associated) gene expression. In contrast, IL-18-plus-IL-12 specifically induced CCR5 expression. The IL-2-plus-IL-18 or IL-12-plus-IL-18 effect on IFN-gamma and IL-13 expression is dependent on Stat4 and NF-kappaB but independent of Stat6, T-bet, or NFAT. Furthermore, IL-12-plus-IL-18 induces significant thymocyte apoptosis when expressed in vivo or in vitro, and this effect is exacerbated in the absence of IFN-gamma. IL-12-plus-IL-18-stimulated thymocytes can also induce IA-IE expression on cortical and medullary thymic epithelial cells in an IFN-gamma-dependent manner. Thus, the combination of IL-2, IL-12, and IL-18 can induce phenotypic and functional changes in thymocytes that may alter migration, differentiation, and cell death of immature T cells inside the thymus and potentially affect the Th1/Th2 bias in peripheral immune compartments.  相似文献   

4.
5.
6.
Interleukin-9 is an immunoregulatory cytokine implicated in the development of asthma and allergy. To investigate the role of IL-9 in vivo, we have generated transgenic mice in which IL-9 is expressed from its own promoter. Strikingly, overexpression of IL-9 resulted in premature mortality associated with a complex phenotype characterized by the development of autoantibodies, hydronephrosis, and T cell lymphoma. By intercrossing IL-9 transgenic mice with a panel of Th2 cytokine-deficient mice, we demonstrate that these disorders represent distinct phenotypes that can be dissociated by their differential dependence on Th2 cytokines. Autoantibody production was ablated in IL-9 transgenic animals with a combined absence of IL-4, IL-5, and IL-13, coincident with a reduction in peritoneal B-1 cells. Hydronephrosis arose in 75% of IL-9 transgenic animals and was dependent on the presence of IL-4 and IL-13. In contrast, T cell lymphomas developed independently of the other Th2 cytokines, with the generation of rapidly proliferating CD8(+) or CD4(+)CD8(+) T cell clones that arose in the thymus before infiltrating both lymphoid and nonlymphoid tissues. Our data highlight potentially important new roles for IL-9, through its regulation of downstream Th2 effector cytokines, in autoantibody production and in hydronephrosis.  相似文献   

7.
IL-4 and IL-13 play key roles in Th2 immunity and asthma pathogenesis. Although the function of these cytokines is partially linked through their shared use of IL-4Ralpha for signaling, the interplay between these cytokines in the development of memory Th2 responses is not well delineated. In this investigation, we show that both IL-4 and IL-13 influence the maturation of dendritic cells (DC) in the lung and their ability to regulate secretion of IFN-gamma and Th2 cytokines by memory CD4(+) T cells. Cocultures of wild-type T cells with pulmonary DC from allergic, cytokine-deficient mice demonstrated that IL-4 enhanced the capacity of DC to stimulate T cell secretion of Th2 cytokines, whereas IL-13 enhanced the capacity of DC to suppress T cell secretion of IFN-gamma. Because IL-4Ralpha is critical for IL-4 and IL-13 signaling, we also determined how variants of IL-4Ralpha influenced immune cell function. T cells derived from allergic mice expressing a high-affinity IL-4Ralpha variant produced higher levels of IL-5 and IL-13 compared with T cells derived from allergic mice expressing a low-affinity IL-4Ralpha variant. Although DC expressing different IL-4Ralpha variants did not differ in their capacity to influence Th2 cytokine production, they varied in their capacity to inhibit IFN-gamma production by T cells. Thus, IL-4 and IL-13 differentially regulate DC function and the way these cells regulate T cells. The affinity of IL-4Ralpha also appears to be a determinant in the balance between Th2 and IFN-gamma responses and thus the severity of allergic disease.  相似文献   

8.
IL-18 has been shown to be a strong cofactor for Th1 T cell development. However, we previously demonstrated that when IL-18 was combined with IL-2, there was a synergistic induction of a Th2 cytokine, IL-13, in both T and NK cells. More recently, we and other groups have reported that IL-18 can potentially induce IgE, IgG1, and Th2 cytokine production in murine experimental models. Here, we report on the generation of IL-18-transgenic (Tg) mice in which mature mouse IL-18 cDNA was expressed. CD8+CD44high T cells and macrophages were increased, but B cells were decreased in these mice while serum IgE, IgG1, IL-4, and IFN-gamma levels were significantly increased. Splenic T cells in IL-18 Tg mice produced higher levels of IFN-gamma, IL-4, IL-5, and IL-13 than control wild-type mice. Thus, aberrant expression of IL-18 in vivo results in the increased production of both Th1 and Th2 cytokines.  相似文献   

9.
10.
A number of reports have described the monoallelic expression of murine cytokine genes. Here we describe the monoallelic expression of the human IL-1alpha gene in CD4+ T cells. Analysis of peripheral blood T cell clones derived from healthy individuals revealed that the IL-1alpha gene shows predominantly monoallelic expression. Monoallelic expression was observed in Th0, Th1, and Th2 cell clones. In addition, we demonstrate monoallelic expression in T cell clones from rheumatoid arthritis patients derived from synovial fluid of the knee joint, suggesting that the occurrence of this phenomenon is not different from that in clones derived from healthy individuals. The finding of monoallelic expression of a cytokine gene in human CD4+ T cell clones provides evidence for allele-specific silencing/activation as another layer of regulation of IL-1alpha gene expression.  相似文献   

11.
12.
13.
14.
Intranasal administration of peptide Ac1-9[4Y], based on the N-terminal epitope of myelin basic protein, can induce CD4(+) T cell tolerance, and suppress experimental autoimmune encephalomyelitis induction. The peptide-induced regulatory T (PI-T(Reg)) cells failed to produce IL-2, but expressed IL-10 in response to Ag and could suppress naive T cell responses in vitro. Analysis of Jak-STAT signaling pathways revealed that the activation of Jak1, STAT3, and STAT5 were induced in tolerant T cells after Ag stimulation in vivo. In addition, the expression of suppressor of cytokine signaling 3 was induced in tolerant T cells, suggesting that cytokines regulate the tolerant state of the PI-T(Reg) cells. Stimulation of PI-T(Reg) cells in vitro with IL-10 induced Jak1 and STAT3 activation, but not STAT5, suggesting that IL-10 is important, but not the only cytokine involved in the development of T cell tolerance. Although IL-2 expression was deficient, stimulation with IL-2 in vitro induced Jak1 and STAT5 activation in PI-T(Reg) cells, restored their proliferative response to antigenic stimulation, and abrogated PI-T(Reg)-mediated suppression in vitro. However, the addition of IL-2 could not suppress IL-10 expression, and the IL-2 gene remained inactive. After withdrawal of IL-2, the PI-T(Reg) cells regained their nonproliferative state and suppressive ability. These results underline the ability of the immune system to maintain tolerance to autoantigens, but at the same time having the ability to overcome the suppressive phenotype of tolerant T cells by cytokines, such as IL-2, during the protective immune response to infection.  相似文献   

15.
Immune deviation of cytolytic T cell function, induced by type 2 cytokines like IL-4, is an attractive concept to explain failure of the immune system in some diseases. However, this concept is challenged by previous conflicting results on whether type 2 cytokine-producing CD8(+) T cells are cytolytic. Therefore, we have analyzed the relationship between cytolytic activity and cytokine production among large numbers of primary CD8(+) T cell clones. Single murine CD8(+) T cells of naive phenotype were activated at high efficiency with immobilized Abs to CD3, CD8, and CD11a in the presence of IL-2 (neutral conditions) or IL-2, IL-4, and anti-IFN-gamma Ab (type 2-polarizing conditions) for 8-9 days. Under neutral conditions, most clones produced IFN-gamma without IL-4 and were cytolytic. Under type 2-polarizing conditions, most clones produced IFN-gamma and IL-4 but displayed variable cytolytic activity and CD8 expression. Separation on the basis of surface CD8 levels revealed that, compared with CD8(high) cells from the same cultures, CD8(low) cells were poorly cytolytic and expressed low levels of perforin mRNA and protein and granzyme A, B, and C mRNA. A similar, smaller population of noncytolytic CD8(low) cells was identified among CD8(+) T cells activated in mixed lymphocyte reaction with IL-4. Variable efficiency of generation of the noncytolytic cells may account for the differing results of earlier studies. We conclude that IL-4 promotes the development of a noncytolytic CD8(low) T cell phenotype that might be important in tumor- or pathogen-induced immune deviation.  相似文献   

16.
17.
IL-13 and IL-4 have similar biological activities and are characteristic of cytokines expressed by Th2 cells. In contrast, IL-12 and IL-18 have been shown to be strong cofactors for Th1 cell development. In this study, we found strong induction of IL-13 mRNA and protein by IL-2 + IL-18 in NK and T cells. In contrast, IL-12 did not enhance the IL-13 production induced by IL-2 alone. Moreover, IL-13 mRNA and protein expression induced by IL-2 + IL-18 in purified NK and T cells obtained from IFN-gamma knockout (-/-) mice were greater than seen in purified cells from normal controls. In contrast, IL-10 production induced by IL-2 and/or IL-12 was not significantly different in IFN-gamma (-/-) mice and normal controls. These results suggest IL-13 expression induced by IL-2 + IL-18 may be regulated by IFN-gamma in vivo, while IL-10 expression may be IFN-gamma-independent. Thus, depending upon the cell type, IL-18 may act as a strong coinducer of Th1 or Th2 cytokines. Our findings suggest that IL-12 and IL-18 have different roles in the regulation of gene expression in NK and T cells.  相似文献   

18.
NK cells differentiate into either NK1 or NK2 cells that produce IFN-gamma or IL-5 and IL-13, respectively. Little is known, however, about the molecular mechanisms that control NK1 and NK2 cell differentiation. To address these questions, we established an in vitro mouse NK1/NK2 cell differentiation culture system. For NK1/NK2 cell differentiation, initial stimulation with PMA and ionomycin was required. The in vitro differentiated NK2 cells produced IL-5 and IL-13, but the levels were 20 times lower than those of Th2 or T cytotoxic (Tc)2 cells. No detectable IL-4 was produced. Freshly prepared NK cells express IL-2Rbeta, IL-2RgammaC, and IL-4Ralpha. After stimulation with PMA and ionomycin, NK cells expressed IL-2Ralpha. NK1 cells displayed higher cytotoxic activity against Yac-1 target cells. The levels of GATA3 protein in developing NK2 cells were approximately one-sixth of those in Th2 cells. Both NK1 and NK2 cells expressed large amounts of repressor of GATA, the levels of which were equivalent to CD8 Tc1 and Tc2 cells and significantly higher than those in Th2 cells. The levels of histone hyperacetylation of the IL-4 and IL-13 gene loci in NK2 cells were very low and equivalent to those in naive CD4 T cells. The production of IL-5 and IL-13 in NK2 cells was found to be STAT6 dependent. Thus, similar to Th2 cells, NK2 cell development is dependent on STAT6, and the low level expression of GATA3 and the high level expression of repressor of GATA may influence the unique type 2 cytokine production profiles of NK2 cells.  相似文献   

19.
p38 mitogen-activated protein kinase regulates human T cell IL-5 synthesis.   总被引:4,自引:0,他引:4  
Involvement of p38 mitogen-activated protein (MAP) kinase in human T cell cytokine synthesis was investigated. p38 MAP kinase was clearly induced in human Th cells activated through the TCR. SB203580, a highly selective inhibitor of p38 MAP kinase, inhibited the induction of p38 MAP kinase in human Th cells. Major T cell cytokines, IL-2, IL-4, IL-5, and IFN-gamma, were produced by Der f 2-specific Th clones upon stimulation through the TCR. IL-5 synthesis alone was significantly inhibited by SB203580 in a dose-dependent manner, whereas the production of IL-2, IL-4, and IFN-gamma was not affected. The proliferation of activated T cells was not affected. IL-5 synthesis of human Th clones induced upon stimulation with rIL-2, phorbol ester plus anti-CD28 mAb, and immobilized anti-CD3 mAb plus soluble anti-CD28 mAb was also suppressed by SB203580 in the same concentration response relationship. The results clearly indicated that IL-5 synthesis by human Th cells is dependent on p38 MAP kinase activity, and is regulated distinctly from IL-2, IL-4, and IFN-gamma synthesis. Selective control of IL-5 synthesis will provide a novel treatment devoid of generalized immune suppression for bronchial asthma and atopic dermatitis that are characterized by eosinophilic inflammation.  相似文献   

20.
It has been difficult to demonstrate functionally distinct T cell populations in humans on the basis of cytokine secretion. As previous investigators have examined the T cell cytokine profile from immunized animals, we examined whether Th1 or Th2 type T cells could be identified in the peripheral blood or cerebrospinal fluid (CSF) immune compartments from subjects with or without inflammatory diseases. Using limiting dilution analysis and growth with PHA and IL-2/IL-4, we directly cloned a total of 177 T cells from the peripheral blood and CSF of seven subjects, four with inflammatory disease and three control subjects, and examined the cytokine message profile after stimulation with ionomycin and PMA. We found that most clones from both the peripheral blood and CSF express IL-1, IL-2, IL-4, IFN-gamma, or TNF-alpha cytokine mRNA after activation with ionomycin and PMA. All T cell clones tested produced TNF-alpha mRNA, and all but 14 produced IFN-gamma mRNA. As reported previously, Th0 cells, which produced IFN-gamma, IL-2, IL-4, and IL-5 mRNA, were found in most subjects. In striking contrast, Th1 cells, which expressed IL-2 and IFN-gamma but not IL-4 or IL-5 mRNA, were present in both peripheral blood and CSF of subjects with inflammatory disease but not found in peripheral blood or CSF of subjects without systemic inflammation. Th2 cells, expressing IL-4 and IL-5 but not IFN-gamma or IL-2 mRNA, were not found in any subject. These data present the first evidence for Th1 T cell clones in humans that may be associated with systemic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号