首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The advent of single-molecule biology has allowed unprecedented insight into the dynamic behavior of biological macromolecules and their complexes. Unexpected properties, masked by the asynchronous behavior of myriads of molecules in bulk experiments, can be revealed; equally importantly, individual members of a molecular population often exhibit distinct features in their properties. Finally, the single-molecule approaches allow us to study the behavior of biological macromolecules under applied tension or torsion; understanding the mechanical properties of these molecules helps us understand how they function in the cell. In this review, we summarize the application of magnetic tweezers (MT) to the study of DNA behavior at the single-molecule level. MT can be conveniently used to stretch DNA and introduce controlled levels of superhelicity into the molecule and to follow to a high definition the action of different types of topoisomerases. Its potential for chromatin studies is also enormous, and we will briefly present our first chromatin results.  相似文献   

2.
Laser trapping of micron-sized particles can be achieved utilizing the radiation pressure generated by a focused infrared laser beam. Thus, it is theoretically possible to trap and manipulate organelles within the cytoplasm and remodel the architecture of the cytoplasm and membrane systems. Here we describe recent progress, using this under utilized technology, in the manipulation of cytoplasmic strands and organelles in plant cells.  相似文献   

3.
Neuman KC  Nagy A 《Nature methods》2008,5(6):491-505
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.  相似文献   

4.
5.
6.
7.
An optical force measurement system for quantitating forces in the pN range between micrometer-sized objects has been developed. The system was based upon optical tweezers in combination with a sensitive position detection system and constructed around an inverted microscope. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omnidirectional mechanical spring in response to an external force. The particle's displacement from the equilibrium position is therefore a direct measure of the exerted force. A weak probe laser beam, focused directly below the trapping focus, was used for position detection of the trapped particle (a polystyrene bead). The bead and the condenser focus the light to a distinct spot in the far field, monitored by a position sensitive detector. Various calibration procedures were implemented in order to provide absolute force measurements. The system has been used to measure the binding forces between Escherichia coli bacterial adhesins and galabiose-functionalized beads.  相似文献   

8.
Zahn M  Renken J  Seeger S 《FEBS letters》1999,443(3):337-340
A fluorimetric multi-parameter cell sensor at the single cell level is presented which makes it possible to observe the physiological behavior of different cell lines, different physiological parameters, and statistical data at the same time. Different cell types were immobilized at predefined positions with high accuracy using optical tweezers and adhesion promoting surface layers. The process is applicable to both adherent and non-adherent cells. Coating of the immobilization area with mussel adhesive protein was shown to be essential for the process. Intracellular proton and calcium concentrations in different cell classes were simultaneously imaged and the specific activation of T lymphocytes was demonstrated. This method should be especially useful for drug screening due to the small sample volume and high information density.  相似文献   

9.
10.
In bacteria, low-copy number plasmids ensure their stable inheritance by partition loci (par), which actively distribute plasmid replicates to each side of the cell division plane. Using time-lapse fluorescence microscopic tracking of segregating plasmid molecules, a new study provides novel insight into the workings of the par system from Escherichia coli plasmid R1. Despite its relative simplicity, the plasmid partition spindle shares characteristics with the mitotic machinery of eukaryotic cells.  相似文献   

11.
Force measurements are performed on single DNA molecules with an optical trapping interferometer that combines subpiconewton force resolution and millisecond time resolution. A molecular construction is prepared for mechanically unzipping several thousand-basepair DNA sequences in an in vitro configuration. The force signals corresponding to opening and closing the double helix at low velocity are studied experimentally and are compared to calculations assuming thermal equilibrium. We address the effect of the stiffness on the basepair sensitivity and consider fluctuations in the force signal. With respect to earlier work performed with soft microneedles, we obtain a very significant increase in basepair sensitivity: presently, sequence features appearing at a scale of 10 basepairs are observed. When measured with the optical trap the unzipping force exhibits characteristic flips between different values at specific positions that are determined by the base sequence. This behavior is attributed to bistabilities in the position of the opening fork; the force flips directly reflect transitions between different states involved in the time-averaging of the molecular system.  相似文献   

12.
Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.  相似文献   

13.
14.
15.
16.
17.
Plant-pathogen arms races at the molecular level   总被引:8,自引:0,他引:8  
Advances in research into the genetics of plant-pathogen interactions include an embracing of evolutionary ideas and methodologies. Recent studies reveal positive selection and selective maintenance of variation in plant resistance and defense-related genes. Coevolution between plants and their enemies involves many interactions at the molecular level.  相似文献   

18.

Background  

The development and testing of functions for the modeling of protein energetics is an important part of current research aimed at understanding protein structure and function. Knowledge-based mean force potentials are derived from statistical analyses of interacting groups in experimentally determined protein structures. Current knowledge-based mean force potentials are developed at the atom or amino acid level. The evolutionary information contained in the profiles is not investigated. Based on these observations, a class of novel knowledge-based mean force potentials at the profile level has been presented, which uses the evolutionary information of profiles for developing more powerful statistical potentials.  相似文献   

19.
We introduce magnetic torque tweezers, which enable direct single-molecule measurements of torque. Our measurements of the effective torsional stiffness C of dsDNA indicated a substantial force dependence, with C = approximately 40 nm at low forces up to C = approximately 100 nm at high forces. The initial torsional stiffness of RecA filaments was nearly twofold larger than that for dsDNA, yet at moderate torques further build-up of torsional strain was prevented.  相似文献   

20.
Magnetic tweezers (MT) are a powerful tool for the study of DNA-enzyme interactions. Both the magnet-based manipulation and the camera-based detection used in MT are well suited for multiplexed measurements. Here, we systematically address challenges related to scaling of multiplexed magnetic tweezers (MMT) towards high levels of parallelization where large numbers of molecules (say 103) are addressed in the same amount of time required by a single-molecule measurement. We apply offline analysis of recorded images and show that this approach provides a scalable solution for parallel tracking of the xyz-positions of many beads simultaneously. We employ a large field-of-view imaging system to address many DNA-bead tethers in parallel. We model the 3D magnetic field generated by the magnets and derive the magnetic force experienced by DNA-bead tethers across the large field of view from first principles. We furthermore experimentally demonstrate that a DNA-bead tether subject to a rotating magnetic field describes a bicircular, Limaçon rotation pattern and that an analysis of this pattern simultaneously yields information about the force angle and the position of attachment of the DNA on the bead. Finally, we apply MMT in the high-throughput investigation of the distribution of the induced magnetic moment, the position of attachment of DNA on the beads, and DNA flexibility. The methods described herein pave the way to kilo-molecule level magnetic tweezers experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号