首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Plant-pathogenic fungi are causative agents of the majority of plant diseases and can lead to severe crop loss in infected populations. Fungal colonization is achieved by combining different strategies, such as avoiding and counteracting the plant immune system and manipulating the host metabolome. Of major importance are virulence factors secreted by fungi, which fulfil diverse functions to support the infection process. Most of these proteins are highly specialized, with structural and biochemical information often absent. Here, we present the atomic structures of the cerato-platanin-like protein Cpl1 from Ustilago maydis and its homologue Uvi2 from Ustilago hordei. Both proteins adopt a double-Ψβ-barrel architecture reminiscent of cerato-platanin proteins, a class so far not described in smut fungi. Our structure–function analysis shows that Cpl1 binds to soluble chitin fragments via two extended grooves at the dimer interface of the two monomer molecules. This carbohydrate-binding mode has not been observed previously and expands the repertoire of chitin-binding proteins. Cpl1 localizes to the cell wall of U. maydis and might synergize with cell wall-degrading and decorating proteins during maize infection. The architecture of Cpl1 harbouring four surface-exposed loop regions supports the idea that it might play a role in the spatial coordination of these proteins. While deletion of cpl1 has only mild effects on the virulence of U. maydis, a recent study showed that deletion of uvi2 strongly impairs U. hordei virulence. Our structural comparison between Cpl1 and Uvi2 reveals sequence variations in the loop regions that might explain a diverging function.  相似文献   

2.
    
The heterobasidiomycetes responsible for plant smuts obligatorily require their hosts for the completion of the sexual cycle. Accordingly, the sexual cycle of these fungi could so far be studied only by infecting host plants. We have now induced Ustilago maydis, the causative agent of corn smut, to traverse the whole life cycle by growing mixtures of mating-compatible strains of the fungus on a porous membrane placed on top of embryogenic cell cultures of its host Zea mays. Under these conditions, mating, karyogamy and meiosis take place, and the fungus induces differentiation of the plant cells. These results suggest that embryogenic maize cells produce diffusible compounds needed for completion of the sexual cycle of U. maydis, as the plant does for the pathogen during infection. Received: 16 February 1999 / Accepted: 30 June 1999  相似文献   

3.
4.
5.
    
Long-chain normal hydrocarbons (e.g. alkanes, alkenes and dienes) are rare biological molecules and their biosynthetic origins are obscure. Detailed analyses of the surface lipids that accumulate on maize silks have revealed that these hydrocarbons constitute a large portion (>90%) of the cuticular waxes that coat this organ, which contrasts with the situation on maize seedling leaves, where the cuticular waxes are primary alcohols and aldehydes. The normal hydrocarbons that occur on silks are part of a homologous series of alkanes, alkenes and dienes of odd-number carbon atoms, ranging between 19 and 33 in number. The alkenes and dienes consist of a homologous series, each of which has double bonds situated at defined positions of the alkyl chains: alkenes have double bonds situated at the sixth, ninth or 12th positions, and dienes have double bonds situated at the sixth and ninth, or ninth and twelfth positions. Finding a homologous series of unsaturated aldehydes and fatty acids suggests that these alkenes and dienes are biosynthesized by a series of parallel pathways of fatty-acid elongation and desaturation reactions, which are followed by sequential reduction and decarbonylation. In addition, the silk cuticular waxes contain metabolically related unsaturated long-chain methylketones, which probably arise via a decarboxylation mechanism. Finally, metabolite profiling analyses of the cuticular waxes of two maize inbred lines (B73 and Mo17), and their genetic hybrids, have provided insights into the genetic control network of these biosynthetic pathways, and that the genetic regulation of these pathways display best-parent heterotic effects.  相似文献   

6.
7.
    
A survey of farmers' fields in the Savanna zone of Nigeria in 1999 indicated the presence of stalk and cob rots of maize at incidence rates of 15?–?43% and disease severity of 2.0?–?6.7. The causal organism was identified as Stenocarpella maydis (?=?Diplodia maydis). S. maydis was found to reduce seed germination by up to 29.2%. Laboratory and screen house experiments were used to evaluate the efficacy of six seed treatment fungicides indicated that Luxan (a local fungicide of unknown composition), benomyl (Benlate) and mancozeb (Dithane M-45) were more effective than metalaxyl?+?carboxin?+?furathiocarp (Apron-plus), carbendazin?+?maneb (Delsene M) and tetramethylthiuram disulphide?+?hexachlorobenzene (thiram?+?HCB) in controlling S. maydis. Stalk rot severity increased with increasing fertilization rates.  相似文献   

8.
    
We addressed whether Zea seedling morphology relevant to performance, defence hormone profiles and tolerance of a phloem‐feeding, specialist herbivore were affected by two processes, plant domestication and modern breeding. Domestication effects were inferred through comparisons between Balsas teosintes (Zea mays parviglumis) and landrace maizes (Z. mays mays), and modern breeding effects through comparisons between landrace maizes and inbred maize lines. Specifically, we compared seedling forms (a composite measure of leaf length, average stem diameter, shoot wet weight, shoot dry weight, total root length, root wet weight, and root dry weight), shapes (forms scaled by seedling dry weight, a proxy for seedling size), and defence hormone profiles among Balsas teosinte and landrace and inbred line maizes, exposed or unexposed to feeding by Dalbulus maidis. Our results suggested that domestication as well as modern breeding strongly mediated both seedling form and shape. Form was more similar between landrace and inbred maize than between Balsas teosinte and landrace maize, suggesting that domestication affected seedling form more than modern breeding. In contrast, shape was more similar between Balsas teosinte and landrace maize than between landrace and inbred maizes, suggesting that modern breeding affected seedling shape more than domestication. Additionally, seedling shoot : root ratios appeared to have been mediated by domestication, but not by modern breeding. In broad terms, individual seedling structures relevant to seedling ecology in wild or managed environments, such as leaf and root lengths, and shoot and root masses, were enlarged with domestication and reduced with modern breeding. Herbivory did not affect seedling shape, but had a weak effect on form so that seedlings were slightly larger in the absence versus presence of D. maidis. Also, both domestication and modern breeding seem to have mediated seedling hormone profiles, with breeding more strongly mediating profiles than domestication. Jasmonic acid isoleucine (JA‐Ile) and salicylic acid (SA) were induced by herbivory in both teosinte and maize. The hormone profiles assays collectively suggested that domestication and modern breeding altered constitutive levels of SA, abscisic acid and JA‐related (JA‐Ile and oxo‐phytodienoic acid) hormone levels in seedlings, particularly by increasing the levels of SA and decreasing those of JA‐related hormones. Altogether, our results suggested that maize domestication and modern breeding significantly altered seedling form, shape, ecologically relevant morphological traits (e.g. leaf and root lengths, and shoot and root masses) and hormonal defences, but not tolerance of D. maidis herbivory.  相似文献   

9.
Molecular genetics of disease resistance in cereals   总被引:13,自引:0,他引:13  
AIMS: This Botanical Briefing attempts to summarize what is currently known about the molecular bases of disease resistance in cereal species and suggests future research directions. SCOPE: An increasing number of resistance (R) genes have been isolated from rice, maize, wheat and barley that encode both structurally related and unique proteins. This R protein diversity may be attributable to the different modus operandi employed by pathogen species in some cases, but it is also a consequence of multiple defence strategies being employed against phytopathogens. Mutational analysis of barley has identified additional genes required for activation of an R gene-mediated defence response upon pathogen infection. In some instances very closely related barley R proteins require different proteins for defence activation, demonstrating that, within a single plant species, multiple resistance signalling pathways and different resistance strategies have evolved to confer protection against a single pathogen species. Despite the apparent diversity of cereal resistance mechanisms, some of the additional molecules required for R protein function are conserved amongst cereal and dicotyledonous species and even other eukaryotic species. Thus the derivation of functional homologues and interacting partner proteins from other species is contributing to the understanding of resistance signalling in cereals. The potential and limit of utilizing the rice genome sequence for further R gene isolation from cereal species is also considered, as are the new biotechnological possibilities for disease control arising from R gene isolation. CONCLUSIONS: Molecular analyses in cereals have further highlighted the complexity of plant-pathogen co-evolution and have shown that numerous active and passive defence strategies are employed by plants against phytopathogens. Many advances in understanding the molecular basis of disease resistance in cereals have focused on monogenic resistance traits. Future research targets are likely to include less experimentally tractable, durable polygenic resistances and nonhost resistance mechanisms.  相似文献   

10.
The aminopeptidase pumAPE was purified from the haploid fungus Ustilago maydis FB1 strain. The purification procedure consisted of ammonium sulfate fractionation and three chromatographic steps, which included anion-exchange, hydrophobic interaction, and gel filtration chromatography, resulting in a 23% recovery. The molecular mass of the dimeric enzyme was estimated to be 110 kDa and 58 kDa by gel filtration chromatography and SDS-PAGE, respectively. Enzymatic activity was optimal at pH 7.0 and at 35 degrees C toward Lys-pNA and the pI was determined to be 5.1. The enzyme was inhibited by EDTA-Na2, 1,10- phenanthroline, bestantin, PMSF and several divalent cations (Cu2+, Hg2+ and Zn2+). The aminopeptidase showed a preference for lysine and arginine in the N-position. The K(m) value was 54.4 microM and the Vmax value was 408 micromolmin(-1)mg(-1) for Lys-pNA.  相似文献   

11.
  总被引:2,自引:0,他引:2  
The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a transgenic approach by constitutively expressing the Totivirus antifungal protein KP4, in maize. Transgenic maize plants expressed high levels of KP4 with no apparent negative impact on plant development and displayed robust resistance to U. maydis challenges to both the stem and ear tissues in the greenhouse. More broadly, these results demonstrate that a high level of organ independent fungal resistance can be afforded by transgenic expression of this family of antifungal proteins.  相似文献   

12.
将经γ射线和EMS诱变处理的玉米八趟白单倍体胚性细胞无性系为试验材料,以玉米小斑病菌Helminthosporium maydis单胞系342号菌株产生的致病毒素为选择剂,采用正选择法进行筛选,已获得抗玉米小斑病的突梦体。这个突变体脱离选择剂5代(5个月)后性状稳定,用小斑病菌的分生孢于直接接种鉴定仍具有很强的抗病力。过氧化物酶同工酶的分析,抗病突变体与不抗病对照间出现明显差异。  相似文献   

13.
A leaf spot disease of maize occurring in Brazil in the 1980s was described as being caused by the ascomycete Phaeosphaeria maydis (P. Henn) Rane. Payak and Renfro (imperfect form Phyllosticta sp.). Disease symptoms were dark-green water-soaked spots that later became necrotic lesions. There are no reports at present in the literature of re-infection by the fungus under controlled conditions, casting doubt on the true identity of the pathogen. In this study, cytological analyses of lesions at the initial stages did not detect the presence of fungal structures. Bacterial colonies with yellow pigmentation were isolated from the lesions, which reacted positively in hypersensitivity tests in tobacco plants. Maize plants were inoculated with the isolated bacteria. After 72 h incubation in a dew chamber, plants were transferred to a greenhouse, where they remained until evaluation. Typical symptoms of the disease were observed 5–7 days after inoculation of plants, only on treatments inoculated with the bacteria. The bacterium was re-isolated, which suggests its involvement in the initial phases of disease. The bacterium was identified as Pantoea ananas (synonym Erwinia ananas ).  相似文献   

14.
15.
A wide range of plant lines has been propagated by farmers during crop selection and dissemination, but consequences of this crop diversification on plant-microbe interactions have been neglected. Our hypothesis was that crop evolutionary history shaped the way the resulting lines interact with soil bacteria in their rhizospheres. Here, the significance of maize diversification as a factor influencing selection of soil bacteria by seedling roots was assessed by comparing rhizobacterial community composition of inbred lines representing the five main genetic groups of maize, cultivated in a same European soil. Rhizobacterial community composition of 21-day-old seedlings was analysed using a 16S rRNA taxonomic microarray targeting 19 bacterial phyla. Rhizobacterial community composition of inbred lines depended on the maize genetic group. Differences were largely due to the prevalence of certain Betaproteobacteria and especially Burkholderia, as confirmed by quantitative PCR and cloning/sequencing. However, these differences in bacterial root colonization did not correlate with plant microsatellite genetic distances between maize genetic groups or individual lines. Therefore, the genetic structure of maize that arose during crop diversification (resulting in five main groups), but not the extent of maize diversification itself (as determined by maize genetic distances), was a significant factor shaping rhizobacterial community composition of seedlings.  相似文献   

16.
  总被引:1,自引:0,他引:1  
rhm1 is a major recessive disease resistance locus for Southern corn leaf blight (SCLB).To further narrow down its genetic position,F 2 population and BC 1 F 1 population derived from the cross between resistant (H95 rhm) and susceptible parents (H95) of maize (Zea mays) were constructed.Using newly developed markers,rhm1 was initially delimited within an interval of 2.5 Mb,and then finally mapped to a 8.56 kb interval between InDel marker IDP961-503 and simple sequence repeat (SSR) marker A194149-1.Three polymorphic markers IDP961-504,IDP B2-3 and A194149-2 were shown to be co-segregated with the rhm1 locus.Sequence analysis of the 8.56 kb DNA fragment revealed that it contained only one putative gene with a predicted amino acid sequence identical to lysine histidine transporter 1 (LHT1).Comparative sequence analysis indicated that the LHT1 in H95 rhm harbors a 354 bp insertion in its third exon as compared with that of susceptible alleles in B73,H95 and Mo17.The 354 bp insertion resulted in a truncation of the predicted protein of candidate resistance allele (LHT1-H95 rhm).Our results strongly suggest LHT1 as the candidate gene for rhm1 against SCLB.The tightly linked molecular markers developed in this study can be directly used for molecular breeding of resistance to Southern corn leaf blight in maize.  相似文献   

17.
Conserved polypeptides of the chitin synthase genes UmCHS3 and UmCHS6 from the phytopathogenic fungus Ustilago maydis were utilized as immunogens to obtain polyclonal antibodies that were purified by affinity procedures. Because of their similarities at the regions encoded by either polypeptide, it was concluded that anti-Chs3 antibodies recognized both Chs3 and Chs4 chitin synthases, whereas anti-Chs6 antibodies recognized Chs6 and Chs8 polypeptides. These antibodies were used to analyze the localization of the corresponding chitin synthases in U. maydis cells, using both indirect immunofluorescence microscopy and immunoelectron microscopy with colloidal-gold-labeled secondary antibodies. It was observed that chitin synthase proteins were accumulated both in the surface and in the cytoplasm of the fungal cells. Electron microscopy images revealed the accumulation of clusters of gold particles in vesicles, providing evidence for the possible origin and destination of chitin synthases in the fungal cells.  相似文献   

18.
19.
  总被引:1,自引:0,他引:1  
Ustilago maydis strains, with low to moderate resistance to fluazinam (Rf ranging from 11.8 to 80), were isolated in a mutation frequency of 0.75 × 10−7 after chemical mutagenesis with N‐methyl‐N‐nitro‐N‐nitrosoguanidine (MNNG). Genetic analysis resulted in the identification of two chromosomal genes. A study of the effect of mutant genes in the phytopathogenic fitness of U. maydis revealed that the resistance mutations had no apparent effect on mycelia growth rate and pathogenicity on young corn plants. Cross‐resistant studies showed that the mutations for resistance to fluazinam were also responsible for resistance to oligomycin, but not to dinitrophenol. A dose‐dependent inhibition of glucose oxidation in whole cells was observed by both fluazinam and oligomycin, and a complete inhibition was found at 40 μg/ml. The results obtained provide strong evidence that the mode of action of fluazinam consists of the inhibition the fungal cell's energy production process through direct inhibition of the ATP synthetase.  相似文献   

20.
    
Ustilago maydis is a pathogenic fungus that causes corn smut. Because of its easy cultivation and genetic transformation, U. maydis has become an important model organism for plant-pathogenic basidiomycetes. U. maydis is able to infect maize by producing effectors and secreted proteins as well as surfactant-like metabolites. In addition, the production of melanin and iron carriers is also associated with its pathogenicity. Here, advances in our understanding of the pathogenicity of U. maydis, the metabolites involved in the pathogenic process, and the biosynthesis of these metabolites, are reviewed and discussed. This summary will provide new insights into the pathogenicity of U. maydis and the functions of associated metabolites, as well as new clues for deciphering the biosynthesis of metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号