首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
Plant nematodes are agricultural pests, the control of which relies on chemical nematicides and fumigants that are among the most toxic and environmentally damaging of all agrochemicals. New approaches to control, based on transgenic resistance, would provide important health and environmental benefits. In this chapter we consider briefly some targets for engineering nematode resistance and discuss the use of plant protease inhibitors as anti-feedants. This approach has provided plants that display good levels of resistance against a range of nematode species. To enhance this defence strategy further we are investigating the value of directed evolution to improve the characteristics of protease inhibitors. We describe the approaches of DNA shuffling and phage display that are being used to create and screen variant libraries in the search for inhibitors with improved features.  相似文献   

2.
Loss of susceptibility as an alternative for nematode resistance   总被引:3,自引:0,他引:3  
Among plant pathogens, sedentary endoparasitic nematodes are one of the most damaging pests in global agriculture. These obligate parasites interact with their hosts in a quite unique and intriguing way. They induce the redifferentiation of root cells into specialized feeding cells essential for nematode growth and reproduction; thus, nematodes have evolved the ability to exploit plant genes and hijack host functions for their own requirements. Various approaches to engineer plants with resistance to parasitic nematodes have been pursued, most focusing on the introduction of resistance genes. An alternative strategy to achieve resistance is to exploit the susceptibility of plant disease. Better knowledge of the plant response during the compatible interaction should allow the identification of targets to engineer resistance to parasitic nematodes in crop species.  相似文献   

3.
Anthelmintic resistance is a major problem for the control of many parasitic nematode species and has become a major constraint to livestock production in many parts of the world. In spite of its increasing importance, there is still a poor understanding of the molecular and genetic basis of resistance. It is unclear which mutations contribute most to the resistance phenotype and how resistance alleles arise, are selected and spread in parasite populations. The main strategy used to identify mutations responsible for anthelmintic resistance has been to undertake experimental studies on candidate genes. These genes have been chosen predominantly on the basis of our knowledge of drug mode-of-action and the identification of mutations that can confer resistance in model organisms. The application of these approaches to the analysis of benzimidazole and ivermectin resistance is reviewed and the reasons for their relative success or failure are discussed. The inherent limitation of candidate gene studies is that they rely on very specific and narrow assumptions about the likely identity of resistance-associated genes. In contrast, forward genetic and functional genomic approaches do not make such assumptions, as illustrated by the successful application of these techniques in the study of insecticide resistance. Although there is an urgent need to apply these powerful approaches to anthelmintic resistance research, the basic methodologies and resources are still lacking. However, these are now being developed for the trichostrongylid nematode Haemonchus contortus and the current progress and research priorities in this area are discussed.  相似文献   

4.
Plant-parasitic nematodes are pests of a wide range of economically important crops, causing severe losses to agriculture. Natural genetic resistance of plants is expected to be a valid solution of the many problems nematodes cause all over the world. Progress in resistance applications is particularly important for the less-developed countries of tropical and subtropical regions, since use of resistant cultivars may be the only possible and economically feasible control strategy in those farming systems. Resistance is being considered of particular importance also in modern high-input production systems of developed countries, as the customary reliance on chemical nematicides has been restricted or has come to an end. This review briefly describes the genetic bases of resistance to nematodes in plants and focuses on the chances and problems of its exploitation as a key element in an integrated management program. Much space is dedicated to the major problem of resistance durability, in that the intensive use of resistant cultivars is likely to increasingly induce the selection of virulent populations able to “break” the resistance. Protocols of pest-host suitability are described, as bioassays are being used to evaluate local nematode populations in their potential to be selected on resistant germplasm and endanger resistant crops. The recent progress in using robust and durable resistances against nematodes as an efficient method for growers in vegetable cropping systems is reported, as well as the possible use of chemicals that do not show any unfavorable impact on environment, to induce in plants resistance against plant-parasitic nematodes.  相似文献   

5.
Harmony grape rootstock displays resistance to several Meloidogyne spp. but that resistance is not durable in commercial vineyard settings. A 2-year experiment in a microplot setting revealed host specificities of two virulent populations of Meloidogyne arenaria and an avirulent population of Meloidogyne incognita. In a subsequent split-root experiment, the avirulent nematode population was demonstrated to induce resistance to the virulent nematode population. To quantify the level of resistance, reproduction of the virulent nematode population was determined 63 days after being challenged by an avirulent nematode population using a range of inoculum densities and timeframes. Induction of resistance became apparent when the virulent nematode population was inoculated 7 days after the avirulent nematode population and increased thereafter. The level of induced resistance increased with increased inoculum levels of the avirulent nematode population. Root systems of perennial crops are commonly fed upon simultaneously by multiple nematode species. These two studies indicate that field populations can become preferentially virulent upon one or multiple rootstocks and that co-inhabiting populations may induce existing resistance mechanisms. In perennial crops, it is common for numerous nematode species besides Meloidogyne spp. to be present, including some that feed without causing apparent damage.  相似文献   

6.
Plant nematodes are major pests of agriculture. Transgenic plant technology has been developed based on the use of proteinase inhibitors as nematode anti-feedants. The approach offers prospects for novel plant resistance and reduced use of environmentally damaging nematicides. A modified rice cystatin, Oc-IΔD86, expressed as a transgene in Arabidopsis thaliana , has a profound effect on the size and fecundity of females for both Heterodera schachtii (beet-cyst nematode) and Meloidogyne incognita (root-knot nematode). No females of either species achieved the minimum size they require for egg production. Ingestion of Oc-IΔD86 from the plant was correlated with loss of cysteine proteinase activity in the intestine thereby suppressing normal growth, as required of an effective anti-feedant plant defence.  相似文献   

7.
This report describes a molecular method for determining in a first step the generic composition of a nematode community and in a second step, the resistance of each species to benzimidazole (BZ). We first established a polymerase chain reaction (PCR) linked to a restriction fragment length polymorphism strategy using the isotype 1 beta-tubulin gene. This method overcame the limitations of morphological identification of larval stages of trichostrongylid nematode species. Geographically distant isolates from the three main gastrointestinal species in temperate zones, Teladorsagia circumcincta, Haemonchus contortus, and Trichostrongylus colubriformis, were distinguished using this method. We then used an allele-specific PCR (AS-PCR) to detect mutations of residue 200 of the beta-tubulin, which is implicated in BZ resistance. The sequences of several samples confirmed the BZ-resistance genotype determined by AS-PCR. The ability to process large numbers of samples simultaneously makes this PCR-based strategy particularly suitable for epidemiological studies. It may also be useful for monitoring the emergence of resistant alleles in nematode communities.  相似文献   

8.
Entomopathogenic nematodes respond to a variety of stimuli when foraging. Previously, we reported a directional response to electrical fields for two entomopathogenic nematode species; specifically, when electrical fields were generated on agar plates Steinernema glaseri (a nematode that utilizes a cruiser-type foraging strategy) moved to a higher electric potential, whereas Steinernema carpocapsae, an ambush-type forager, moved to a lower potential. Thus, we hypothesized that entomopathogenic nematode directional response to electrical fields varies among species, and may be related to foraging strategy. In this study, we tested the hypothesis by comparing directional response among seven additional nematode species: Heterorhabditis bacteriophora, Heterorhabditis georgiana, Heterorhabditis indica, Heterorhabditis megidis, Steinernema feltiae, Steinernema riobrave, and Steinernema siamkayai. S. carpocapsae and S. glaseri were also included as positive controls. Heterorhabditids tend toward cruiser foraging approaches whereas S. siamkayai is an ambusher and S. feltiae and S. riobrave are intermediate. Additionally, we determined the lowest voltage that would elicit a directional response (tested in S. feltiae and S. carpocapsae), and we investigated the impact of nematode age on response to electrical field in S. carpocapsae. In the experiment measuring diversity of response among species, we did not detect any response to electrical fields among the heterorhabditids except for H. georgiana, which moved to a higher electrical potential; S. glaseri and S. riobrave also moved to a higher potential, whereas S. carpocapsae, S. feltiae, and S. siamkayai moved to a lower potential. Overall our hypothesis that foraging strategy can predict directional response was supported (in the nematodes that exhibited a response). The lowest electric potential that elicited a response was 0.1 V, which is comparable to electrical potential associated with some insects and plant roots. The level of response to electrical potential diminished with nematode age. These results expand our knowledge of electrical fields as cues that may be used by entomopathogenic nematodes for host-finding or other aspects of navigation in the soil.  相似文献   

9.
10.
11.
Adaptation to changing environmental conditions represents a challenge to parthenogenetic organisms, and until now, how phenotypic variants are generated in clones in response to the selection pressure of their environment remains poorly known. The obligatory parthenogenetic root‐knot nematode species Meloidogyne incognita has a worldwide distribution and is the most devastating plant‐parasitic nematode. Despite its asexual reproduction, this species exhibits an unexpected capacity of adaptation to environmental constraints, for example, resistant hosts. Here, we used a genomewide comparative hybridization strategy to evaluate variations in gene copy numbers between genotypes of M. incognita resulting from two parallel experimental evolution assays on a susceptible vs. resistant host plant. We detected gene copy number variations (CNVs) associated with the ability of the nematodes to overcome resistance of the host plant, and this genetic variation may reflect an adaptive response to host resistance in this parthenogenetic species. The CNV distribution throughout the nematode genome is not random and suggests the occurrence of genomic regions more prone to undergo duplications and losses in response to the selection pressure of the host resistance. Furthermore, our analysis revealed an outstanding level of gene loss events in nematode genotypes that have overcome the resistance. Overall, our results support the view that gene loss could be a common class of adaptive genetic mechanism in response to a challenging new biotic environment in clonal animals.  相似文献   

12.
In this paper, we concentrate on a comparison of plant and animal-parasitic nematodes, to gain insight into the factors that influence the acquisition of the drug resistance by nematodes. Comparing nematode parasite of domestic animals and cultivated plants, it appears that drug resistance threatens only domestic animal production. Does the paucity of report on nematicide field resistance reflect reality or, is nematicide resistance bypassed by other management practices, specific to cultivated plants (i.e. agricultural control)? First, it seems that selection pressure by treatments in plants is not as efficient as selection pressure in ruminants. Agronomic practices (i.e. sanitation, early planting, usage of nematodes resistant cultivar and crop rotation) are frequently used to control parasitic-plant nematodes. Although the efficiency of such measures is generally moderate to high, integrated approaches are developing successfully in parasitic-plant nematode models. Secondly, the majority of anthelmintic resistance cases recorded in animal-parasitic nematodes concern drug families that are not used in plant-parasitic nematodes control (i.e. benzimidazoles, avermectines and levamisole). Thirdly, particular life traits of parasitic-plant nematodes (low to moderate fecundity and reproductive strategy) are expected to reduce probability of appearance and transmission of drug resistance genes. It has been demonstrated that, for a large number of nematodes such as Meloidogyne spp., the mode of reproduction by mitotic parthenogenesis reduced genetic diversity of populations which may prevent a rapid drug resistance development. In conclusion, anthelmintic resistance develops in nematode parasite of animals as a consequence of an efficient selection pressure. Early detection of anthelmintic resistance is then crucial: it is not possible to avoid it, but only to delay its development in farm animal industry.  相似文献   

13.
Recombinant DNA techniques have been used to introduce agronomically valuable traits, including resistance to viruses, herbicides, and insects, into crop plants. Introduction of these genes into plants frequently involves Agrobacterium-mediated gene transfer. The potential exists for applying this technology to nematode control by introducing genes conferring resistance to nematodes. Transferred genes could include those encoding products detrimental to nematode development or reproduction as well as cloned host resistance genes. Host genes that confer resistance to cyst or root-knot nematode species have been identified in many plants. The best characterized is Mi, a gene that confers resistance to root-knot nematodes in tomato. A map-based cloning approach is being used to isolate the gene. For development of a detailed map of the region of the genome surrounding Mi, DNA markers genetically linked to Mi have been identified and analyzed in tomato lines that have undergone a recombination event near Mi. The molecular map will be used to identify DNA corresponding to Mi. We estimate that a clone of Mi will be obtained in 2-5 years. An exciting prospect is that introduction of this gene will confer resistance in plant species without currently available sources of resistance.  相似文献   

14.
RNA interference (RNAi) is a powerful tool for the analysis of gene function in model organisms such as the nematode Caenorhabditis elegans. Recent demonstrations of RNAi in plant parasitic nematodes provide a stimulus to explore the potential of using RNAi to investigate disruption of gene function in Meloidogyne incognita, one of the most important nematode pests of global agriculture. We have used RNAi to examine the importance of dual oxidases (peroxidase and NADPH oxidase), a class of enzyme associated with extracellular matrix cross-linking in C. elegans. RNAi uptake by M. incognita juveniles is highly efficient. In planta infection data show that a single 4-h preinfection treatment with double-stranded RNA derived from the peroxidase region of a dual oxidase gene has effects on gene expression that are phenotypically observable 35 days postinfection. This RNAi effect results in a reduction in egg numbers at 35 days of up to 70%. The in vitro feeding strategy provides a powerful tool for identifying functionally important genes, including those that are potential targets for the development of new agrochemicals or transgenic resistance strategies.  相似文献   

15.
Summary Genes conferring resistance to the beet cyst nematode (Heterodera schachtii Schm.) have been transferred to sugar beet (Beta vulgaris L.) from three wild species of the Procumbentes section using monosomic addition and translocation lines, because no meiotic recombination occurs between chromosomes of cultured and wild species. In the course of a project to isolate the nematode resistance genes by strategies of reverse genetics, probes were cloned from DNA of a fragmented B. procumbens chromosome carrying a resistance gene, which had been isolated by pulsed-field gel electrophoresis. One probe (pRK643) hybridized with a short dispersed repetitive DNA element, which was found only in wild beets, and thus may be used as a molecular marker for nematode resistance to progenies of monosomic addition lines segregating resistant and susceptible individuals. Additional probes for the resistance gene region were obtained with a polymerase chain reaction (PCR)-based strategy using repetitive primers to amplify DNA located between repetitive elements. One of these probes established the existence of at least six different chromosomes from wild beet species, each conferring resistance independently of the others. A strict correlation between the length of the wild beet chromatin introduced in fragment addition and translocation lines and the repeat copy number has been used physically to map the region conferring resistance to a chromosome segment of 0.5-3 Mb.  相似文献   

16.
Cyst nematodes are highly evolved sedentary plant endoparasitesthat use parasitism proteins injected through the stylet intohost tissues to successfully parasitize plants. These secretoryproteins likely are essential for parasitism as they are involvedin a variety of parasitic events leading to the establishmentof specialized feeding cells required by the nematode to obtainnourishment. With the advent of RNA interference (RNAi) technologyand the demonstration of host-induced gene silencing in parasites,a new strategy to control pests and pathogens has become available,particularly in root-knot nematodes. Plant host-induced silencingof cyst nematode genes so far has had only limited success butsimilarly should disrupt the parasitic cycle and render thehost plant resistant. Additional in planta RNAi data for cystnematodes are being provided by targeting four parasitism genesthrough host-induced RNAi gene silencing in transgenic Arabidopsisthaliana, which is a host for the sugar beet cyst nematode Heteroderaschachtii. Here it is reported that mRNA abundances of targetednematode genes were specifically reduced in nematodes feedingon plants expressing corresponding RNAi constructs. Furthermore,this host-induced RNAi of all four nematode parasitism genesled to a reduction in the number of mature nematode females.Although no complete resistance was observed, the reductionof developing females ranged from 23% to 64% in different RNAilines. These observations demonstrate the relevance of the targetedparasitism genes during the nematode life cycle and, potentiallymore importantly, suggest that a viable level of resistancein crop plants may be accomplished in the future using thistechnology against cyst nematodes. Key words: beet cyst nematode (BCN), soybean cyst nematode (SCN), host induced, in planta RNAi, resistance, RNAi, transgenic Received 19 August 2008; Revised 25 October 2008 Accepted 27 October 2008  相似文献   

17.
Most hosts are concurrently or sequentially infected with multiple parasites; thus, fully understanding interactions between individual parasite species and their hosts depends on accurate characterization of the parasite community. For parasitic nematodes, noninvasive methods for obtaining quantitative, species‐specific infection data in wildlife are often unreliable. Consequently, characterization of gastrointestinal nematode communities of wild hosts has largely relied on lethal sampling to isolate and enumerate adult worms directly from the tissues of dead hosts. The necessity of lethal sampling severely restricts the host species that can be studied, the adequacy of sample sizes to assess diversity, the geographic scope of collections and the research questions that can be addressed. Focusing on gastrointestinal nematodes of wild African buffalo, we evaluated whether accurate characterization of nematode communities could be made using a noninvasive technique that combined conventional parasitological approaches with molecular barcoding. To establish the reliability of this new method, we compared estimates of gastrointestinal nematode abundance, prevalence, richness and community composition derived from lethal sampling with estimates derived from our noninvasive approach. Our noninvasive technique accurately estimated total and species‐specific worm abundances, as well as worm prevalence and community composition when compared to the lethal sampling method. Importantly, the rate of parasite species discovery was similar for both methods, and only a modest number of barcoded larvae (n = 10) were needed to capture key aspects of parasite community composition. Overall, this new noninvasive strategy offers numerous advantages over lethal sampling methods for studying nematode–host interactions in wildlife and can readily be applied to a range of study systems.  相似文献   

18.
Physical, chemical, and biological factors of soil may reduce damage caused by plant-parasitic nematodes. Suppression of plant-parasitic nematodes is particularly challenging in soils in which there are short crop sequences, sequential susceptible host crops, or infestations of multiple nematode species. In southern Indiana, a watermelon production system involving rotations with soybean and corn does not suppress Meloidogyne incognita, but several aspects of such systems can be modified to reduce nematode damage in an integrated management approach. Cash crops with resistance to M. incognita can be used to reduce population densities of M. incognita. Small grains as cover crops can be replaced by cover crops with resistance to M. incognita or by crops with biofumigation potential. Mycorrhizal fungal inoculations of potting mixes during transplanting production of watermelon seedlings may improve early crop establishment. Other approaches to nematode management utilize soil suppressiveness. One-year rotations of soybean with corn neither reduced the soil-borne complex of sudden death syndrome (SDS) nor improved soybean root health over that in soybean monoculture. Reduced tillage combined with crop rotation may reduce the activity of soil-borne pathogens in some soils. For example in a long-term trial, numbers of Heterodera glycines and severity of foliar SDS symptoms were reduced under minimum tillage. Thus, sustainable management strategies require holistic approaches that consider entire production systems rather than focus on a single crop in its year of production.  相似文献   

19.
It is estimated that one billion people globally are infected by parasitic nematodes, with children, pregnant women, and the elderly particularly susceptible to morbidity from infection. Control methods are limited to de-worming, which is hampered by rapid re-infection and the inevitable development of anthelmintic resistance. One family of proteins that has been implicated in nematode anthelmintic resistance are the ATP binding cassette (ABC) transporters. ABC transporters are characterized by a highly conserved ATP-binding domain and variable transmembrane regions. A growing number of studies have associated ABC transporters in anthelmintic resistance through a protective mechanism of drug efflux. Genetic deletion of P glycoprotein type ABC transporters in Caenorhabditis elegans demonstrated increased sensitivity to anthelmintics, while in the livestock parasite, Haemonchus contortus, anthelmintic use has been shown to increase the expression of ATP transporter genes. These studies as well as others, provide evidence for a potential role of ABC transporters in drug resistance in nematodes. In order to understand more about the family of ABC transporters, we used hidden Markov models to predict ABC transporter proteins from 108 species across the phylum Nematoda and use these data to analyze patterns of diversification and loss in diverse nematode species. We also examined temporal patterns of expression for the ABC transporter family within the filarial nematode Brugia malayi and identify cases of differential expression across diverse life-cycle stages. Taken together, our data provide a comprehensive overview of ABC transporters in diverse nematode species and identify examples of gene loss and diversification in nematodes based on lifestyle and taxonomy.  相似文献   

20.
Gastrointestinal nematode infection is a constraint on sheep production worldwide. Selective breeding programmes to enhance resistance to nematode infection are currently being implemented in a number of countries. Identification of loci associated with resistance to infection or causative mutations for resistance would enable more effective selection. Loci associated with indicator traits for nematode resistance has been identified in previous studies. In this study, Scottish Blackface, Texel and Suffolk lambs were used to validate the effects at eight genomic regions previously associated with nematode resistance (OAR3, 4, 5, 7, 12, 13, 14, 21). No SNP was significantly associated with nematode resistance at the region‐wide level but seven SNPs in three of the regions (OAR4, 12, 14) were nominally associated with trichostrongyle egg count in this study and six of these were also significant when fitted as single SNP effects. Nematodirus egg count was nominally associated with SNPs on OAR3, 4, 7 and 12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号