首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The search for new microbial strains that are able to withstand inhibitors released from hemicellulosic hydrolysis and are also still able to convert sugars in ethanol/xylitol is highly desirable. A yeast strain isolated from sugarcane juice and identified as Meyerozyma guilliermondii was evaluated for the ability to grow and ferment pentoses in synthetic media and in sugarcane bagasse hydrolysate. The yeast grew in xylose, arabinose and glucose at the same rate at an initial medium pH of 5.5. At pH 4.5, the yeast grew more slowly in arabinose. There was no sugar exhaustion within 60 h. At higher xylose concentrations with a higher initial cell concentration, sugar was exhausted within 96 h at pH 4.5. An increase of 350 % in biomass was obtained in detoxified hydrolysates, whereas supplementation with 3 g/L yeast extract increased biomass production by approximately 40 %. Ethanol and xylitol were produced more significantly in supplemented hydrolysates regardless of detoxification. Xylose consumption was enhanced in supplemented hydrolysates and arabinose was consumed only when xylose and glucose were no longer available. Supplementation had a greater impact on ethanol yield and productivity than detoxification; however, the product yields obtained in the present study are still much lower when compared to other yeast species in bagasse hydrolysate. By the other hand, the fermentation of both xylose and arabinose and capability of withstanding inhibitors are important characteristics of the strain assayed.  相似文献   

2.
Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8?g/L in xylose and 52.6?g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4?g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40?g/L of ethanol and ethanol production capacity of the yeast was 52?g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170?g/L sugar concentrations.  相似文献   

3.
Microbial conversion of renewable raw materials to useful products is an important objective in industrial biotechnology. Pichia stipitis, a yeast that naturally ferments xylose, was genetically engineered for l-(+)-lactate production. We constructed a P. stipitis strain that expressed the l-lactate dehydrogenase (LDH) from Lactobacillus helveticus under the control of the P. stipitis fermentative ADH1 promoter. Xylose, glucose, or a mixture of the two sugars was used as the carbon source for lactate production. The constructed P. stipitis strain produced a higher level of lactate and a higher yield on xylose than on glucose. Lactate accumulated as the main product in xylose-containing medium, with 58 g/liter lactate produced from 100 g/liter xylose. Relatively efficient lactate production also occurred on glucose medium, with 41 g/liter lactate produced from 94 g/liter glucose. In the presence of both sugars, xylose and glucose were consumed simultaneously and converted predominantly to lactate. Lactate was produced at the expense of ethanol, whose production decreased to approximately 15 to 30% of the wild-type level on xylose-containing medium and to 70 to 80% of the wild-type level on glucose-containing medium. Thus, LDH competed efficiently with the ethanol pathway for pyruvate, even though the pathway from pyruvate to ethanol was intact. Our results show, for the first time, that lactate production from xylose by a yeast species is feasible and efficient. This is encouraging for further development of yeast-based bioprocesses to produce lactate from lignocellulosic raw material.  相似文献   

4.
Summary Ethanol was produced from xylose by converting the sugar to xylulose, using commercial xylose isomerases, and simultaneously converting the xylulose to ethanol by anaerobic fermentation using different yeast strains. The process was optimized with the yeast strain Schizosaccharomyces pombe (Y-164). The data show that the simultaneous fermentation and isomerization of 6% xylose can produce final ethanol concentrations of 2.1% w/v within 2 days at temperatures as high as 39°C.Nomenclature SFIX simultaneous fermentation and isomerization of xylose - V p volumetric production (g ethanol·l-1 per hour) - Q p specific rate (g ethanol·g-1 cells per hour) - Y s yield from substrate consumed (g ethanol, g-1 xylose) - ET ethanol concentration (% wt/vol) - XT xylitol concentration (% wt/vol) - Glu glucose - Xyl xylose - --m maximum - --f final  相似文献   

5.
Escherichia coli KO11, carrying the ethanol pathway genes pdc (pyruvate decarboxylase) and adh (alcohol dehydrogenase) from Zymomonas mobilis integrated into its chromosome, has the ability to metabolize pentoses and hexoses to ethanol, both in synthetic medium and in hemicellulosic hydrolysates. In the fermentation of sugar mixtures simulating hemicellulose hydrolysate sugar composition (10.0 g of glucose/l and 40.0 g of xylose/l) and supplemented with tryptone and yeast extract, recombinant bacteria produced 24.58 g of ethanol/l, equivalent to 96.4% of the maximum theoretical yield. Corn steep powder (CSP), a byproduct of the corn starch-processing industry, was used to replace tryptone and yeast extract. At a concentration of 12.5 g/l, it was able to support the fermentation of glucose (80.0 g/l) to ethanol, with both ethanol yield and volumetric productivity comparable to those obtained with fermentation media containing tryptone and yeast extract. Hemicellulose hydrolysate of sugar cane bagasse supplemented with tryptone and yeast extract was also readily fermented to ethanol within 48 h, and ethanol yield achieved 91.5% of the theoretical maximum conversion efficiency. However, fermentation of bagasse hydrolysate supplemented with 12.5 g of CSP/l took twice as long to complete. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
Semidefined media fermentation simulating the sugar composition of hemicellulosic hydrolysates (around 85 g l-1 xylose, 17 g l-1 glucose, and 9 g l-1 arabinose) was investigated to evaluate the glucose and arabinose influence on xylose-to-xylitol bioconversion by Candida guilliermondii. The results revealed that glucose reduced the xylose consumption rate by 30%. Arabinose did not affect the xylose consumption but its utilization by the yeast was fully repressed by both glucose and xylose sugars. Arabinose was only consumed when it was used as a single carbon source. Xylitol production was best when glucose was not present in the fermentation medium. On the other hand, the arabinose favored the xylitol yield (which attained 0.74 g g-1 xylose consumed) and it did not interfere with xylitol volumetric productivity (Q P=0.85 g g-1), the value of which was similar to that obtained with xylose alone.  相似文献   

7.
建立筛选利用木糖为碳源产乙醇酵母模型,获得一株适合利用木质纤维素为原料产乙醇的酵母菌株。样品经麦芽汁培养基培养后,以木糖为唯一碳源的筛选培养基初筛,再以重铬酸钾显色法复筛。通过生理生化和26D1/D2区对筛选得到的菌株进行分析和鉴定,该菌初步鉴定为Pichia caribbica。经过筛选得到的菌株Y2-3以木糖(40g/L)为唯一碳源发酵时:生物量为23.5g/L,木糖利用率为94.7 %,乙醇终产量为4.57 g/L;以混合糖(葡萄糖40 g/L,木糖20 g/L)发酵时:生物量为28.6 g/L,木糖利用率为94.2 %,葡萄糖利用率为95.6%,乙醇终产量为20.6 g/L。Pichia caribbica是可以转化木糖及木糖-葡萄糖混合糖为乙醇的酵母菌株,为利用木质纤维素发酵乙醇的进一步研究奠定了基础。  相似文献   

8.
During the fermentation of lignocellulosic hydrolyzates to ethanol by native pentose-fermenting yeasts such as Scheffersomyces (Pichia) stipitis NRRL Y-7124 (CBS 5773) and Pachysolen tannophilus NRRL Y-2460, the switch from glucose to xylose uptake results in a diauxic lag unless process strategies to prevent this are applied. When yeast were grown on glucose and resuspended in mixed sugars, the length of this lag was observed to be a function of the glucose concentration consumed (and consequently, the ethanol concentration accumulated) prior to the switch from glucose to xylose fermentation. At glucose concentrations of 95 g/L, the switch to xylose utilization was severely stalled such that efficient xylose fermentation could not occur. Further investigation focused on the impact of ethanol on cellular xylose transport and the induction and maintenance of xylose reductase and xylitol dehydrogenase activities when large cell populations of S. stipitis NRRL Y-7124 were pre-grown on glucose or xylose and then presented mixtures of glucose and xylose for fermentation. Ethanol concentrations around 50 g/L fully repressed enzyme induction although xylose transport into the cells was observed to be occurring. Increasing degrees of repression were documented between 15 and 45 g/L ethanol. Repitched cell populations grown on xylose resulted in faster fermentation rates, particularly on xylose but also on glucose, and eliminated diauxic lag and stalling during mixed sugar conversion by P. tannophilus or S. stipitis, despite ethanol accumulations in the 60 or 70 g/L range, respectively. The process strategy of priming cells on xylose was key to the successful utilization of high mixed sugar concentrations because specific enzymes for xylose utilization could be induced before ethanol concentration accumulated to an inhibitory level.  相似文献   

9.
An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.  相似文献   

10.
Fermentation to ethanol of pentose-containing spent sulphite liquor   总被引:3,自引:0,他引:3  
Ethanolic fermentation of spent sulphite liquor with ordinary bakers' yeast is incomplete because this yeast cannot ferment the pentose sugars in the liquor. This results in poor alcohol yields, and a residual effluent problem By using the yeast Candida shehatae (R) for fermentation of the spent sulphite liquor from a large Canadian alcohol-producing sulphite pulp and paper mill, pentoses as well as hexoses were fermented nearly completely, alcohol yields were raised by 33%, and sugar removal increased by 46%. Inhibitors were removed prior to fermentation by steam stripping. Major benefits were obtained by careful recycling of this yeast, which was shown to be tolerant both of high sugar concentrations and high alcohol concentrations. When sugar concentrations over 250 g/L (glucose: xylose 70:30) were fermented, ethanol became an inhibitor when its concentration reached 90 g/L. However, when the ethanol was removed by low-temperature vacuum distillation, fermentation continued and resulted in a yield of 0.50 g ethanol/g sugar consumed. Further improvement was achieved by combining enzyme saccharification of sugar oligomers with fermentation. This yeast is able to ferment both hexoses and pentoses simultaneously, efficiently, and rapidly. Present indications are that it is well suited to industrial operations wherever hexoses and pentoses are both to be fermented to ethanol, for example, in wood hydrolysates.  相似文献   

11.
A new fungus, Pestalotiopsis sp. XE-1, which produced ethanol from xylose with yield of 0.47 g ethanol/g of consumed xylose was isolated. It also produced ethanol from arabinose, glucose, fructose, mannose, galactose, cellobiose, maltose, and sucrose with yields of 0.38, 0.47, 0.45, 0.46, 0.31, 0.25, 0.31, and 0.34 g ethanol/g of sugar consumed, respectively. It produced maximum ethanol from xylose at pH 6.5, 30°C under a semi-aerobic condition. Acetic acid produced in xylose fermenting process inhibited ethanol production of XE-1. The ethanol yield in the pH-uncontrolled batch fermentation was about 27% lower than that in the pH-controlled one. The ethanol tolerance of XE-1 was higher than most xylose-fermenting, ethanol-producing microbes, but lower than Saccharomyces cerevisiae and Hansenula polymorpha. XE-1 showed tolerance to high concentration of xylose, and was able to grow and produce ethanol even when it was cultivated in 97.71 g/l xylose.  相似文献   

12.
Its metabolic characteristics suggest that Zymobacter palmae gen. nov., sp. nov. could serve as a useful new ethanol-fermenting bacterium, but its biotechnological exploitation will require certain genetic modifications. We therefore engineered Z. palmae so as to broaden the range of its fermentable sugar substrates to include the pentose sugar xylose. The Escherichia coli genes encoding the xylose catabolic enzymes xylose isomerase, xylulokinase, transaldolase, and transketolase were introduced into Z. palmae, where their expression was driven by the Zymomonas mobilis glyceraldehyde-3-phosphate dehydrogenase promoter. When cultured with 40 g/liter xylose, the recombinant Z. palmae strain was able to ferment 16.4 g/liter xylose within 5 days, producing 91% of the theoretical yield of ethanol with no accumulation of organic acids as metabolic by-products. Notably, xylose acclimation enhanced both the expression of xylose catabolic enzymes and the rate of xylose uptake into recombinant Z. palmae, which enabled the acclimated organism to completely and simultaneously ferment a mixture of 40 g/liter glucose and 40 g/liter xylose within 8 h, producing 95% of the theoretical yield of ethanol. Thus, efficient fermentation of a mixture of glucose and xylose to ethanol can be accomplished by using Z. palmae expressing E. coli xylose catabolic enzymes.  相似文献   

13.
The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45–50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90–95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47–0.50 g/g), and a final ethanol concentration of 100–110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.  相似文献   

14.
Its metabolic characteristics suggest that Zymobacter palmae gen. nov., sp. nov. could serve as a useful new ethanol-fermenting bacterium, but its biotechnological exploitation will require certain genetic modifications. We therefore engineered Z. palmae so as to broaden the range of its fermentable sugar substrates to include the pentose sugar xylose. The Escherichia coli genes encoding the xylose catabolic enzymes xylose isomerase, xylulokinase, transaldolase, and transketolase were introduced into Z. palmae, where their expression was driven by the Zymomonas mobilis glyceraldehyde-3-phosphate dehydrogenase promoter. When cultured with 40 g/liter xylose, the recombinant Z. palmae strain was able to ferment 16.4 g/liter xylose within 5 days, producing 91% of the theoretical yield of ethanol with no accumulation of organic acids as metabolic by-products. Notably, xylose acclimation enhanced both the expression of xylose catabolic enzymes and the rate of xylose uptake into recombinant Z. palmae, which enabled the acclimated organism to completely and simultaneously ferment a mixture of 40 g/liter glucose and 40 g/liter xylose within 8 h, producing 95% of the theoretical yield of ethanol. Thus, efficient fermentation of a mixture of glucose and xylose to ethanol can be accomplished by using Z. palmae expressing E. coli xylose catabolic enzymes.  相似文献   

15.
Ethanol production was evaluated from eucalyptus wood hemicellulose acid hydrolysate using Pichia stipitis NRRL Y-7124. An initial lag phase characterized by flocculation and viability loss of the yeast inoculated was observed. Subsequently, cell regrowth occurred with sequential consumption of sugars and production of ethanol. Polyol formation was detected. Acetic acid present in the hydrolysate was an important inhibitor of the fermentation, reducing the rate and the yield. Its toxic effect was due essentially to its undissociated form. The fermentation was more effective at an oxygen transfer rate between 1.2 and 2.4 mmol/L h and an initial pH of 6.5. The hydrolysate used in the experiences had the following composition (expressed in grams per liter): xylose 30, arabinose 2.8, glucose 1.5, galactose 3.7, mannose 1.0, cellobiose 0.5, acetic acid 10, glucuronic acid 1.5, and galacturonic acid 1.0. The best values obtained were maximum ethanol concentration 12.6 g/L, fermentation time 75 h, fermentable sugar consumption 99% ethanol yield 0.35 g/g sugars consumed, and volumetric ethanol productivity 4 g/L day. (c) 1992 John Wiley & Sons, Inc.  相似文献   

16.
Consumption of hexoses and pentoses and production of ethanol by Mucor indicus were investigated in both synthetic media and dilute-acid hydrolyzates. The fungus was able to grow in a poor medium containing only carbon, nitrogen, phosphate, potassium, and magnesium sources. However, the cultivation took more than a week and the ethanol yield was only 0.2 gg(-1). Enrichment of the medium by addition of trace metals, particularly zinc and yeast extract, improved the growth rate and yield, such that the cultivation was completed in less than 24 h and the ethanol and biomass yields were increased to 0.40 and 0.20 gg(-1), respectively. The fungus was able to assimilate glucose, galactose, mannose, and xylose, and produced ethanol with yields of 0.40, 0.34, 0.39, and 0.18 gg(-1), respectively. However, arabinose was poorly consumed and no formation of ethanol was detected. Glycerol was the major by-product in the cultivation on the hexoses, while formation of glycerol and xylitol were detected in the cultivation of the fungus on xylose. The fungus was able to take up the sugars present in dilute-acid hydrolyzate as well as the inhibitors, acetic acid, furfural, and hydroxymethyl furfural. M. indicus was able to grow under anaerobic conditions when glucose was the sole carbon source, but not on xylose or the hydrolyzate. The yield of ethanol in anaerobic cultivation on glucose was 0.46 g g(-1).  相似文献   

17.
The ability of a recombinant Saccharomyces yeast strain to ferment the sugars glucose, xylose, arabinose and galactose which are the predominant monosaccharides found in corn fibre hydrolysates has been examined. Saccharomyces strain 1400 (pLNH32) was genetically engineered to ferment xylose by expressing genes encoding a xylose reductase, a xylitol dehydrogenase and a xylulose kinase. The recombinant efficiently fermented xylose alone or in the presence of glucose. Xylose-grown cultures had very little difference in xylitol accumulation, with only 4 to 5g/l accumulating, in aerobic, micro-aerated and anaerobic conditions. Highest production of ethanol with all sugars was achieved under anaerobic conditions. From a mixture of glucose (80g/l) and xylose (40g/l), this strain produced 52g/l ethanol, equivalent to 85% of theoretical yield, in less than 24h. Using a mixture of glucose (31g/l), xylose (15.2g/l), arabinose (10.5g/l) and galactose (2g/l), all of the sugars except arabinose were consumed in 24h with an accumulation of 22g ethanol/l, a 90% yield (excluding the arabinose in the calculation since it is not fermented). Approximately 98% theoretical yield, or 21g ethanol/l, was achieved using an enzymatic hydrolysate of ammonia fibre exploded corn fibre containing an estimated 47.0g mixed sugars/l. In all mixed sugar fermentations, less than 25% arabinose was consumed and converted into arabitol.  相似文献   

18.
The yeast strain Candida guilliermondii 2581 was chosen for its ability to produce xylitol in media with high concentrations of xylose. The rate of xylitol production at a xylose concentration of 150 g/l is 1.25 g/l per h; the concentration of xylitol after three days of cultivation is 90 g/l; and the relative xylitol yield is 0.6 g per g substrate consumed. The growth conditions were found that resulted in the maximum relative xylitol yield with complete consumption of the sugar: xylose concentration, 150 g/l; pH 6.0; and shaking at 60 rpm. It was shown that the growth under conditions of limited aeration favors the reduction of xylose.  相似文献   

19.
Summary The fermentation of glucose (5g/L), xylose (80g/L) and arabinose (5g/L) produced 42.5g/L of ethanol in 96 hours, yielding 0.49g of alcohol per g of sugar using recombinantEscherichia coli. At these concentrations, the first sugar to be consumed was glucose, followed by arabinose and xylose last.  相似文献   

20.
The efficient diversion of pyruvate from normal fermentative pathways to ethanol production in Klebsiella oxytoca M5A1 requires the expression of Zymomonas mobilis genes encoding both pyruvate decarboxylase and alcohol dehydrogenase. Final ethanol concentrations obtained with the best recombinant, strain M5A1 (pLOI555), were in excess of 40 g/liter with an efficiency of 0.48 g of ethanol (xylose) and 0.50 g of ethanol (glucose) per g of sugar, as compared with a theoretical maximum of 0.51 g of ethanol per g of sugar. The maximal volumetric productivity per hour for both sugars was 2.0 g/liter. This volumetric productivity with xylose is almost twice that previously obtained with ethanologenic Escherichia coli. Succinate was also produced as a minor product during fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号