首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By interconverting glucocorticoids, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) exerts an important pre-receptor function and is currently considered a promising therapeutic target. In addition, 11beta-HSD1 plays a potential role in 7-ketocholesterol metabolism. Here we investigated the role of the N-terminal region on enzymatic activity and addressed the relevance of 11beta-HSD1 orientation into the endoplasmic reticulum (ER) lumen. Previous studies revealed that the luminal orientation of 11beta-HSD1 and 50-kDa esterase/arylacetamide deacetylase (E3) is determined by their highly similar N-terminal transmembrane domains. Substitution of Lys(5) by Ser in 11beta-HSD1, but not of the analogous Lys(4) by Ile in E3, led to an inverted topology in the ER membrane, indicating the existence of a second topological determinant. Here we identified Glu(25)/Glu(26) in 11beta-HSD1 and Asp(25) in E3 as the second determinant for luminal orientation. Our results suggest that the exact location of specific residues rather than net charge distribution on either side of the helix is critical for membrane topology. Analysis of charged residues in the N-terminal domain revealed an essential role of Lys(35)/Lys(36) and Glu(25)/Glu(26) on enzymatic activity, suggesting that these residues are responsible for the observed stabilizing effect of the N-terminal membrane anchor on the catalytic domain of 11beta-HSD1. Moreover, activity measurements in intact cells expressing wild-type 11beta-HSD1, facing the ER lumen, or mutant K5S/K6S, facing the cytoplasm, revealed that the luminal orientation is essential for efficient oxidation of cortisol. Furthermore, we demonstrate that 11beta-HSD1, but not mutant K5S/K6S with cytoplasmic orientation, catalyzes the oxoreduction of 7-ketocholesterol. 11beta-HSD1 and E3 constructs with cytosolic orientation of their catalytic moiety should prove useful in future studies addressing the physiological function of these proteins.  相似文献   

2.
Hexose-6-phosphate dehydrogenase (H6PDH) has been shown to stimulate 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-dependent local regeneration of active glucocorticoids. Here, we show that coexpression with H6PDH results in a dramatic shift from 11beta-HSD1 oxidase to reductase activity without affecting the activity of the endoplasmic reticular enzyme 17beta-HSD2. Immunoprecipitation experiments revealed coprecipitation of H6PDH with 11beta-HSD1 but not with the related enzymes 11beta-HSD2 and 17beta-HSD2, suggesting a specific interaction between H6PDH and 11beta-HSD1. The use of the 11beta-HSD1/11beta-HSD2 chimera indicates that the N-terminal 39 residues of 11beta-HSD1 are sufficient for interaction with H6PDH. An important role of the N-terminus was indicated further by the significantly stronger interaction of 11beta-HSD1 mutant Y18-21A with H6PDH compared to wild-type 11beta-HSD1. The protein-protein interaction and the involvement of the N-terminus of 11beta-HSD1 were confirmed by Far-Western blotting. Finally, fluorescence resonance energy transfer (FRET) measurements of HEK-293 cells expressing fluorescently labeled proteins provided evidence for an interaction between 11beta-HSD1 and H6PDH in intact cells. Thus, using three different methods, we provide strong evidence that the functional coupling between 11beta-HSD1 and H6PDH involves a direct physical interaction of the two proteins.  相似文献   

3.
Two distinct genes encode the 93% homologous type 1 (placenta, peripheral tissues) and type 2 (adrenals, gonads) 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD/isomerase) in humans. Mutagenesis studies using the type 1 enzyme have produced the Y154F and K158Q mutant enzymes in the Y(154)-P-H(156)-S-K(158) motif as well as the Y269S and K273Q mutants from a second motif, Y(269)-T-L-S-K(273), both of which are present in the primary structure of the human type 1 3beta-HSD/isomerase. In addition, the H156Y mutant of the type 1 enzyme has created a chimera of the type 2 enzyme motif (Y(154)-P-Y(156)-S-K(158)) in the type 1 enzyme. The mutant and wild-type enzymes have been expressed and purified. The K(m) value of dehydroepiandrosterone is 13-fold greater, and the maximal turnover rate (K(cat)) is 2-fold greater for wild-type 2 3beta-HSD compared with the wild-type 1 3beta-HSD activity. The H156Y mutant of the type 1 enzyme has substrate kinetic constants for 3beta-HSD activity that are very similar to those of the wild-type 2 enzyme. Dixon analysis shows that epostane inhibits the 3beta-HSD activity of the wild-type 1 enzyme with 14-17-fold greater affinity compared with the wild-type 2 and H156Y enzymes. The Y154F and K158Q mutants exhibit no 3beta-HSD activity, have substantial isomerase activity, and utilize substrate with K(m) values similar to those of wild-type 1 isomerase. The Y269S and K273Q mutants have low, pH-dependent 3beta-HSD activity, exhibit only 5% of the maximal isomerase activity, and utilize the isomerase substrate very poorly. From these studies, a structural basis for the profound differences in the substrate and inhibition kinetics of the wild-type 1 and 2 3beta-HSD, plus a catalytic role for the Tyr(154) and Lys(158) residues in the 3beta-HSD reaction have been identified. These advances in our understanding of the structure/function of human type 1 and 2 3beta-HSD/isomerase may lead to the design of selective inhibitors of the type 1 enzyme not only in placenta to control the onset of labor but also in hormone-sensitive breast, prostate, and choriocarcinoma tumors to slow their growth.  相似文献   

4.
The human type 1 (placenta, breast tumors, and prostate tumors) and type 2 (adrenals and gonads) isoforms of 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD1 and 3beta-HSD2) are encoded by two distinct genes that are expressed in a tissue-specific pattern. Our recent studies have shown that His156 contributes to the 14-fold higher affinity that 3beta-HSD1 exhibits for substrate and inhibitor steroids compared with human 3beta-HSD2 containing Tyr156 in the otherwise identical catalytic domain. Our structural model of human 3beta-HSD localizes His156 or Tyr156 in the subunit interface of the enzyme homodimer. The model predicts that Gln105 on one enzyme subunit has a higher probability of interacting with His156 on the other subunit in 3beta-HSD1 than with Tyr156 in 3beta-HSD2. The Q105M mutant of 3beta-HSD1 (Q105M1) shifts the Michaelis-Menten constant (Km) for 3beta-HSD substrate and inhibition constants (Ki) for epostane and trilostane to the much lower affinity profiles measured for wild-type 3beta-HSD2 and H156Y1. However, the Q105M2 mutant retains substrate and inhibitor kinetic profiles similar to those of 3beta-HSD2. Our model also predicts that Gln240 in 3beta-HSD1 and Arg240 in 3beta-HSD2 may be responsible for the 3-fold higher affinity of the type 1 isomerase activity for substrate steroid and cofactors. The Q240R1 mutation increases the isomerase substrate Km by 2.2-fold to a value similar to that of 3beta-HSD2 isomerase and abolishes the allosteric activation of isomerase by NADH. The R240Q2 mutation converts the isomerase substrate, cofactor, and inhibitor kinetic profiles to the 4-14-fold higher affinity profiles of 3beta-HSD1. Thus, key structural reasons for the substantially higher affinities of 3beta-HSD1 for substrates, coenzymes, and inhibitors have been identified. These structure and function relationships can be used in future docking studies to design better inhibitors of the 3beta-HSD1 that may be useful in the treatment of hormone-sensitive cancers and preterm labor.  相似文献   

5.
Pu X  Yang K 《Steroids》2000,65(3):148-156
The 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) enzyme is responsible for the interconversion of glucocorticoids and their inactive metabolites, and thus modulates the intracellular level of bioactive glucocorticoids. The present study was designed to clone and characterize 11beta-HSD1 in the guinea pig, a laboratory animal known for resistance to glucocorticoids. The cDNA encoding guinea pig 11beta-HSD1 was cloned by a modified 3'-RACE (rapid amplification of cDNA ends) protocol using the hepatic RNA as template. The cloned cDNA encodes a protein of 300 amino acids that shares 71 to 74% sequence identity with other known mammalian 11beta-HSD1 proteins. Sequence comparison analysis revealed that the deduced guinea pig 11beta-HSD1 was longer, by eight amino acids at the C terminus, than those of other mammals. Moreover, one of the two absolutely conserved consensus sites for N-glycosylation was absent. To examine the functional significance of these structural changes, we also characterized 11beta-HSD1 activity in the hepatic microsomes. Although the guinea pig hepatic enzyme was NADP(H)-dependent and reversible, it displayed equal affinity for cortisol and cortisone (apparent K(m) for both substrates was 3 microM). This is in marked contrast to 11beta-HSD1 in other mammals whose affinity for cortisone is approximately 10 times higher than that for cortisol (apparent K(m) of 0.3 vs. 3.0 microM). The apparent lower affinity of the guinea pig enzyme for cortisone would suggest that the intracellular bioformation of cortisol from circulating cortisone may be less efficient in this species. Northern blot analysis and RT-PCR revealed that the mRNA for 11beta-HSD1 was widely expressed in the adult guinea pig but at low amounts. In conclusion, the present study has identified distinct features in the deduced primary structure and catalytic function of 11beta-HSD1 in the guinea pig. Thus, the guinea pig provides a useful model in which the structural determinants of catalytic function of 11beta-HSD1 may be studied.  相似文献   

6.
7.
Previous studies identified two intrinsic endoplasmic reticulum (ER) proteins, 11beta-hydroxysteroid dehydrogenase, isozyme 1 (11beta-HSD) and the 50-kDa esterase (E3), sharing some amino acid sequence motifs in their N-terminal transmembrane (TM) domains. Both are type II membrane proteins with the C terminus projecting into the lumen of the ER. This finding implied that the N-terminal TM domains of 11beta-HSD and E3 may constitute a lumenal targeting signal (LTS). To investigate this hypothesis we created chimeric fusions using the putative targeting sequences and the reporter gene, Aequorea victoria green fluorescent protein. Transfected COS cells expressing LTS-green fluorescent protein chimeras were examined by fluorescent microscopy and electron microscopic immunogold labeling. The orientation of expressed chimeras was established by immunocytofluorescent staining of selectively permeabilized COS cells. In addition, protease protection assays of membranes in the presence and absence of detergents was used to confirm lumenal or the cytosolic orientation of the constructed chimeras. To investigate the general applicability of the proposed LTS, we fused the N terminus of E3 to the N terminus of the NADH-cytochrome b5 reductase lacking the myristoyl group and N-terminal 30-residue membrane anchor. The orientation of the cytochrome b5 reductase was reversed, from cytosolic to lumenal projection of the active domain. These observations establish that an amino acid sequence consisting of short basic or neutral residues at the N terminus, followed by a specific array of hydrophobic residues terminating with acidic residues, is sufficient for lumenal targeting of single-pass proteins that are structurally and functionally unrelated.  相似文献   

8.
9.
11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD 1) is a microsomal enzyme responsible for the reversible interconversion of active 11beta-hydroxyglucocorticoids into inactive 11-ketosteroids and by this mechanism regulates access of glucocorticoids to the glucocorticoid receptor. The enzyme has also been proven to participate in xenobiotic carbonyl compound detoxification. 11beta-HSD 1 is anchored within the membranes of the endoplasmic reticulum (ER) by its N-terminus, whereby its active site protrudes into the lumen of the ER. In the primary structure of 11beta-HSD 1 three Asn-X-Ser glycosylation motifs have been identified. However, the importance of N-linked glycosylation of 11beta-HSD 1 for catalytic activity has been controversely discussed. To clarify if glycosylation is essential for enzyme activity, we performed deglycosylation experiments of native 11beta-HSD 1 from human liver as well as site-directed mutagenesis to remove potential glycosylation sites upon overexpression in Pichia pastoris. The altered proteins were examined regarding their catalytic activity towards their physiological glucocorticoid substrates. The molecular size of the various 11beta-HSD 1 forms was analyzed by immunoblotting with a polyclonal antibody raised against 11beta-HSD 1 protein from human liver. By stepwise enzymatic deglycosylation of native 11beta-HSD 1 we could demonstrate that all potential glycosylation sites carry N-linked oligosaccharide residues under physiological conditions. Interestingly, complete deglycosylation did not affect enzyme activity, neither in the reductive (cortisone) nor in the oxidative (cortisol) direction. Upon overexpression in the yeast P. pastoris, 11beta-HSD 1 did not undergo glycosylation, but, in spite of this, yielded a fully active enzyme. Our results conclusively demonstrate that 11beta-HSD 1 does not need to be glycosylated to perform its physiological role as glucocorticoid oxidoreductase.  相似文献   

10.
11.
Human type 1 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta-HSD/isomerase) catalyzes the two sequential enzyme reactions on a single protein that converts dehydroepiandrosterone or pregnenolone to androstenedione or progesterone, respectively, in placenta, mammary gland, breast tumors, prostate, prostate tumors, and other peripheral tissues. Our earlier studies show that the two enzyme reactions are linked by the coenzyme product, NADH, of the 3 beta-HSD activity. NADH activates the isomerase activity by inducing a time-dependent conformational change in the enzyme protein. The current study tested the hypothesis that the 3 beta-HSD and isomerase activities shared a common coenzyme domain, and it characterized key amino acids that participated in coenzyme binding and the isomerase reaction. Homology modeling with UDP-galactose-4-epimerase predicts that Asp36 is responsible for the NAD(H) specificity of human 3 beta-HSD/isomerase and identifies the Rossmann-fold coenzyme domain at the amino terminus. The D36A/K37R mutant in the potential coenzyme domain and the D241N, D257L, D258L, and D265N mutants in the potential isomerase domain (previously identified by affinity labeling) were created, expressed, and purified. The D36A/K37R mutant shifts the cofactor preference of both 3 beta-HSD and isomerase from NAD(H) to NADP(H), which shows that the two activities utilize a common coenzyme domain. The D257L and D258L mutations eliminate isomerase activity, whereas the D241N and D265N mutants have nearly full isomerase activity. Kinetic analyses and pH dependence studies showed that either Asp257 or Asp258 plays a catalytic role in the isomerization reaction. These observations further characterize the structure/function relationships of human 3 beta-HSD/isomerase and bring us closer to the goal of selectively inhibiting the type 1 enzyme in placenta (to control the timing of labor) or in hormone-sensitive breast tumors (to slow their growth).  相似文献   

12.
13.
The human type 1 (placenta, breast tumors) and type 2 (gonads, adrenals) isoforms of 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) are key enzymes in biosynthesis of all active steroid hormones. Human 3beta-HSD1 is a critical enzyme in the conversion of DHEA to estradiol in breast tumors and may be a major target enzyme for the treatment of breast cancer. 3beta-HSD2 participates in the production of cortisol and aldosterone in the human adrenal gland. The goals of this project are to evaluate the role of the 2alpha-cyano group on trilostane (2alpha-cyano-4alpha,5alpha-epoxy-17beta-ol-androstane-3-one) and determine which amino acids may be critical for 3beta-HSD1 specificity. Trilostane without the 2alpha-cyano group, 4alpha,5alpha-epoxy-testosterone, was synthesized. Using our structural model of 3beta-HSD1, trilostane or 4alpha,5alpha-epoxy-testosterone was docked in the active site using Autodock 3.0, and the potentially critical residues (Met187 and Ser124) were identified. The M187T and S124T mutants of 3beta-HSD1 were created, expressed and purified. Dixon analyses of the inhibition of wild-type 3beta-HSD1, 3beta-HSD2, M187T and S124T by trilostane and 4alpha,5alpha-epoxy-testosterone suggest that the 2alpha-cyano group of trilostane is anchored by Ser124 in both isoenzymes. Kinetic analyses of cofactor and substrate utilization as well as the inhibition kinetics of M187T and the wild-type enzymes suggest that the 16-fold higher-affinity inhibition of 3beta-HSD1 by trilostane may be related to the presence of Met187 in 3beta-HSD1 and Thr187 in 3beta-HSD2. This structure/function information may lead to the production of more highly specific inhibitors of 3beta-HSD1 to block the hormone-dependent growth of breast tumors.  相似文献   

14.
Mammalian 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) is a member of the short chain dehydrogenase/reductase. It is a key steroidogenic enzyme that catalyzes the first step of the multienzyme pathway conversion of circulating dehydroepiandrosterone and pregnenolone to active steroid hormones. A three dimensional model of a ternary complex of human 3beta-HSD type 1 (3beta-HSD_1) with an NAD cofactor and androstenedione product has been developed based upon X-ray structures of the ternary complex of E. coli UDP-galactose 4-epimerase (UDPGE) with an NAD cofactor and substrate (PDB_AC: 1NAH) and the ternary complex of human type 1 17beta-hydroxysteroid dehydrogenase (17beta-HSD_1) with an NADP cofactor and androstenedione (PDB_AC: 1QYX). The dimeric structure of the enzyme was built from two monomer models of 3beta-HSD_1 by respective 3D superposition with A and B subunits of the dimeric structure of Streptococcus suis DTDP-D-glucose 4,6-dehydratase (PDB_AC: 1KEP). The 3D model structure of 3beta-HSD_1 has been successfully used for the rational design of mutagenic experiments to further elucidate the key substrate binding residues in the active site as well as the basis for dual function of the 3beta-HSD_1 enzyme. The structure based mutant enzymes, Asn100Ser, Asn100Ala, Glu126Leu, His232Ala, Ser322Ala and Asn323Leu, have been constructed and functionally characterized. The mutagenic experiments have confirmed the predicted roles of the His232 and Asn323 residues in recognition of the 17-keto group of the substrate and identified Asn100 and Glu126 residues as key residues that participate for the dehydrogenase and isomerization reactions, respectively.  相似文献   

15.
16.
17.
The local generation of active glucocorticoid by NADPH-dependent, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) oxoreductase activity, has emerged as an important factor in regulating hepatic glucose output and visceral adiposity. We have proposed that this NADPH is generated within the endoplasmic reticulum by the enzyme hexose-6-phosphate dehydrogenase. To address this hypothesis, we generated mice with a targeted inactivation of the H6PD gene. These mice were unable to convert 11-dehydrocorticosterone (11-DHC) to corticosterone but demonstrated increased corticosterone to 11-DHC conversion consistent with lack of 11beta-HSD1 oxoreductase and a concomitant increase in dehydrogenase activity. This increased corticosterone clearance in the knock-out mice resulted in a reduction in circulating corticosterone levels. Our studies define the critical requirement of hexose-6-phosphate dehydrogenase for 11beta-HSD1 oxoreductase activity and add a new dimension to the investigation of 11beta-HSD1 as a therapeutic target in patients with the metabolic syndrome.  相似文献   

18.
11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is an intraluminally oriented, endoplasmic reticulum (ER)-bound enzyme catalyzing the interconversion between inactive cortisone and hormonally active cortisol. Heterologous production of 11beta-HSD1, devoid of its N-terminal transmembrane segment, is possible but yields only small amounts of soluble protein. Here we show that the soluble portion of recombinant 11beta-HSD1 produced in E. coli is found mainly as multimeric aggregates in the absence of detergent, and to a large extent associated with the endogenous chaperonin GroEL and other E. coli proteins. By co-overexpressing GroEL/ES and adding an 11beta-HSD1 inhibitor during protein synthesis, we have increased the accumulation of soluble 11beta-HSD1 by more than one order of magnitude. Using monodispersity as a screening criterion, we have also optimized the purification process by evaluating various solubilizing systems for the chromatographic steps, finally obtaining stable monodisperse preparations of both human and guinea pig 11beta-HSD1. By analytical ultracentrifugation, we could demonstrate that 11beta-HSD1 mainly exists as a dimer in the solubilized state. Moreover, active site titration of human 11beta-HSD1 revealed that at least 75% of the protein in a typical preparation represents active enzyme. Equilibrium unfolding experiments indicate that addition of inhibitor and the cofactor NADP(H) can stabilize the conformational stability of this enzyme in an additive manner. The outlined procedure may provide a general method for preparing similar proteins to oligomeric homogeneity and with retained biological activity.  相似文献   

19.
Glucocorticoids (GCs) induce surfactant synthesis in the late foetal lung. Deficient GC action causes respiratory distress syndrome (RDS). 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts inert cortisone (11-dehydrocorticosterone in rodents) into active cortisol (corticosterone), thus amplifying intracellular GC action. Reduction or loss of pulmonary 11beta-HSD1 activity in glycyrrhetinic acid-treated rats substantially impaired foetal lung maturation (Hundertmark et al., Horm Metab Res, this issue). To test these data, we investigated 11beta-HSD1 activity and lung maturity in the late foetal lung using 11beta-HSD1 knockout mice. Control foetal mice showed high 11beta-HSD activity in the late foetal lung and levels of plasma 11-dehydrocorticosterone were high. Lungs from 11beta-HSD1 -/- mice had lower surfactant protein-A (mRNA and protein) levels and significant depletion of lung surfactant according to both light and electron microscopy, and also had reduced amniotic fluid lecithin/sphingomyelin ratios. These results support the previous experiments with glycyrrhetinic acid and emphasize the importance of 11beta-HSD1 in foetal lung maturation.  相似文献   

20.
The split green fluorescent protein (GFP) system was adapted for investigation of the topology of ER‐associated proteins. A 215‐amino acid fragment of GFP (S1–10) was expressed in the cytoplasm as a free protein or fused to the N‐terminus of calnexin and in the ER as an intraluminal protein or fused to the C‐terminus of calnexin. A 16‐amino acid fragment of GFP (S11) was fused to the N‐ or C‐terminus of the target protein. Fluorescence occurred when both GFP fragments were in the same intracellular compartment. After validation with the cellular proteins PDI and tapasin, we investigated two vaccinia virus proteins (L2 and A30.5) of unknown topology that localize to the ER and are required for assembly of the viral membrane. Our results indicated that the N‐ and C‐termini of L2 faced the cytoplasmic and luminal sides of the ER, respectively. In contrast both the N‐ and C‐termini of A30.5 faced the cytoplasm. The system offers advantages for quickly determining the topology of intracellular proteins: the S11 tag is similar in length to commonly used epitope tags; multiple options are available for detecting fluorescence in live or fixed cells; transfection protocols are adaptable to numerous expression systems and can enable high throughput applications.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号