首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytokinesis in the coenocytic green alga Protosiphon botryoides (Kütz.) Klebs was studied with transmission electron microscopy. In vegetative cells, nuclei with associated basal bodies and dictyosomes are scattered throughout the cytoplasm. Mature cells may develop either multinucleate resting spores (coenocysts) or uninucleate zoospores. Cytokinesis may be preceded by contraction of the protoplast due to the disintegration of vacuoles that are present in larger, siphonous cells. The formation of coenocysts in ageing, siphonous cells, is signalled by cleavage of the chloroplast and the development of arrays of phycoplast microtubules in one or more transversely oriented planes through the cell. Nuclei with associated basal apparatuses stay dispersed throughout the cytoplasm; the basal bodies apparently are not involved in organization of the phycoplast. The plasma membrane invaginates, resulting in a centripetal cleavage of the protoplast into two or more multinucleate daughter protoplasts. Simultaneously, wall material is deposited along the outside of the daughter protoplasts by dictyosome-derived vesicles, and finally two or more thick-walled coenocysts are formed. The formation of zoospores, on the other hand, is signalled by clustering of the nuclei in one or more groups depending on the shape of the mother cell. The nuclei become arranged with the associated basal apparatuses facing toward the center of the cluster. Bundles of phycoplast microtubules develop between the nuclei, radiating from the center of a cluster toward the plasma membrane; basal apparatuses or associated structures apparently are involved in organization of the phycoplast. Cleavage furrows grow out centrifugally along these bundles of micro-tubules, fed by dictyosome-derived vesicles. No wall material is deposited. An additional mitotic division occurs during cleavage, and finally numerous uninucleate, wall-less, biflagellate zoospores are formed. The ultrastructural features of the two different types of cytoplasmic cleavage associated with two different types of daughter cells have not previously been reported for chlorophycean algae.  相似文献   

2.
Multinucleate cells of Coelastrum undergo precisely directed cytokinesis, guided by phycoplast microtubules, to form a number of uninucleate daughter cells which subsequently adhere to form characteristically patterned aggregates. As there is no movement of the daughter cells relative to one another before their adhesion, the disposition of cells in daughter colonies reflects the pattern of cytokinesis of parent cells. Centrioles lie at the poles of the mitotic nuclei which are partially enclosed by a perinuclear envelope of endoplasmic reticulum. The centrioles disappear at the time of cytokinesis of the parental cell and apparently reform de novo once the daughter cells have acquired a cell wall following their adhesion. The trilaminar layer of cell wall, often termed the pectic layer, does not stain with ruthenium red and resists acetolysis suggesting that it contains sporopollenin rather than pectin.  相似文献   

3.
ULTRASTRUCTURE AND TIME COURSE OF MITOSIS IN THE FUNGUS FUSARIUM OXYSPORUM   总被引:12,自引:8,他引:4  
Mitosis in Fusarium oxysporum Schlect. was studied by light and electron microscopy. The average times required for the stages of mitosis, as determined from measurements made on living nuclei, were as follows: prophase, 70 sec; metaphase, 120 sec; anaphase, 13 sec; and telophase, 125 sec, for a total of 5.5 min. New postfixation procedures were developed specifically to preserve the fine-structure of the mitotic apparatus. Electron microscopy of mitotic nuclei revealed a fibrillo-granular, extranuclear Spindle Pole Body (SPB) at each pole of the intranuclear, microtubular spindles. Metaphase chromosomes were attached to spindle microtubules via kinetochores, which were found near the spindle poles at telophase. The still-intact, original nuclear envelope constricted around the incipient daughter nuclei during telophase.  相似文献   

4.
The structure of centric, intranuclear mitosis and of organelles associated with nuclei are described in developing zoosporangia of the chytrid Rhizophydium spherotheca. Frequently dictyosomes partially encompass the sides of diplosomes (paired centrioles). A single, incomplete layer of endoplasmic reticulum with tubular connections to the nuclear envelope is found around dividing nuclei. The nuclear envelope remains intact during mitosis except for polar fenestrae which appear during spindle incursion. During prophase, when diplosomes first define the nuclear poles, secondary centrioles occur adjacent and at right angles to the sides of primary centrioles. By late metaphase the centrioles in a diplosome are positioned at a 40° angle to each other and are joined by an electron-dense band; by telophase the centrioles lie almost parallel to each other. Astral microtubules radiate into the cytoplasm from centrioles during interphase, but by metaphase few cytoplasmic microtubules are found. Cytoplasmic microtubules increase during late anaphase and telophase as spindle microtubules gradually disappear. The mitotic spindle, which contains chromosomal and interzonal microtubules, converges at the base of the primary centriole. Throughout mitosis the semipersistent nucleolus is adjacent to the nuclear envelope and remains in the interzonal region of the nucleus as chromosomes separate and the nucleus elongates. During telophase the nuclear envelope constricts around the chromosomal mass, and the daughter nuclei separate from each end of the interzonal region of the nucleus. The envelope of the interzonal region is relatively intact and encircles the nucleolus, but later the membranes of the interzonal region scatter and the nucleolus disperses. The structure of the mitotic apparatus is similar to that of the chytrid Phlyctochytrium irregulare.  相似文献   

5.
An ultrastructure study of mitosis and cytokinesis in the sessile sporangium of Trentepohlia aurea (L.) Mart, was made to clarify the phylogenetic position of the alga. Mitosis was closed and centric at late anphase with cytokinesis involving the production of cleavage membranes by dictyasames between the numerous, well-separated daughter nuclei. Neither phycoplast nor phragmoplast microtubules were observed during cytokinesis. The lack of phycoplast microtubules and the presence of multilayered structures in flagellated cells suggest Trentepohlia is phylogenetically related to those green algae thought to have given rise to the land plants. The primitive type of mitosis and the lack of microbodies suggest that the ancestors of Trentepohlia may have branched off from this line relatively early.  相似文献   

6.
Cell division in log-phase cultures of the unicellular, biflagellate alga, Chlamydomonas reinhardi, has been studied with the electron microscope. The two basal bodies of the cell replicate prior to cytokinesis; stages in basal body formation are presented. At the time of cell division, the original basal bodies detach from the flagella, and the four basal bodies appear to be involved in the orientation of the plane of the cleavage furrow. Four sets of microtubules participate in cell division. Spindle microtubules are involved in a mitosis that is marked by the presence of an intact nuclear envelope. A band of microtubules arcs over the mitotic nucleus, indicating the future cleavage plane. A third set of microtubules appears between the daughter nuclei at telophase, and microtubules comprising the "cleavage apparatus" radiate from the basal bodies and extend along both sides of the cleavage furrow during cytokinesis. Features of cell division in C. reinhardi are discussed and related to cell division in other organisms. It is proposed that microtubules participate in the formation of the cleavage furrow in C. reinhardi.  相似文献   

7.
At prophase in Pleurastrum, extranuclear spindle microtubules develop from the region of centrioles, which lie lateral to the nucleus midway between the future sites of the metaphase spindle poles. The microtubules then move laterally to overarch the nucleus and finally become incorporated into the spindle. The centrioles do not migrate and therefore lie in the same plane as the chromosomes at metaphase. At telophase, 2, more different systems of microtubules develop from the vicinity of the centrioles—a phycoplast and extensive arrays of microtubules that ensheath the daughter nuclei. Cell division in the filamentous Pleurastrum is compared to that in the green flagellate, Platymonas. The similarities between cell division in the 2 algae are interpreted as evidence: (i) that rhizoplasts (which in Platymonas resemble myofibrils) are somehow homologous to microtubules; and, (ii) that cell division in Pleurastrum differs from cell division in other examined filamentous chlorophycean genera because Pleurastrum has an independent evolutionary origin from a monad with Platymonas-like characteristics.  相似文献   

8.
Using a green fluorescent protein (GFP)-tubulin fusion protein, we have investigated the dynamic rearrangement of microtubules during appressorium formation of Colletotrichum lagenarium. Two alpha-tubulin genes of C. lagenarium were isolated, and GFP-alpha-tubulin protein was expressed in this fungus. The strain expressing the fusion protein formed fluorescent filaments that were disrupted by a microtubule-depolymerizing drug, benomyl, demonstrating successful visualization of microtubules. In preincubated conidia, GFP-labeled interphase microtubules, showing random orientation, were observed. At conidial germination, microtubules oriented toward a germination site. At nuclear division, when germ tubes had formed appressoria, mitotic spindles appeared inside conidia followed by disassembly of interphase microtubules. Remarkably, time-lapse views showed that interphase microtubules contact a microtubule-associated center at the cell cortex of conidia that is different from a nuclear spindle pole body (SPB) before their disassembly. Duplicated nuclear SPBs separately moved toward conidium and appressorium accompanied by astral microtubule formation. Benomyl treatment caused movement of both daughter nuclei into 70% of appressoria and affected appressorium morphogenesis. In conidia elongating hyphae without appressoria, microtubules showed polar elongation which is distinct from their random orientation inside appressoria.  相似文献   

9.
The planar cell polarity (PCP) pathway organizes the cytoskeleton and polarizes cells within embryonic tissue. We investigate the relationship between PCP signaling and cell fate determination during asymmetric division of neural progenitors (NPs) in mouse embryos. The cortex of Lp/Lp (Loop-tail) mice deficient in the essential PCP mediator Vangl2, homologue of Drosophila melanogaster Strabismus (Stbm), revealed precocious differentiation of neural progenitors into early-born neurons at the expense of late-born neurons and glia. Although Lp/Lp NPs were easily maintained in vitro, they showed premature differentiation and loss of asymmetric distribution of Leu-Gly-Asn–enriched protein (LGN)/partner of inscuteable (Pins), a regulator of mitotic spindle orientation. Furthermore, we observed a decreased frequency in asymmetric distribution of the LGN target nuclear mitotic apparatus protein (NuMa) in Lp/Lp cortical progenitors in vivo. This was accompanied by an increase in the number of vertical cleavage planes typically associated with equal daughter cell identities. These findings suggest that Stbm/Vangl2 functions to maintain cortical progenitors and regulates mitotic spindle orientation during asymmetric divisions in the vertebrate brain.  相似文献   

10.
Mitosis in Mantoniella squamata (Manton and Parke) Desikachary, a small scale-covered green monad, is presented. Organelle replication precedes nuclear division and begins with the replication of the chloroplast. As the chloroplasts separate, the Golgi and flagellar apparatuses divide. The discoid microbody enlarges and becomes ‘V'-shaped, with the arms extending toward depressions in the pyrenoid stalks of the chloroplasts. At prophase, microtubules produced by an amorphous microtubule organizing center enter the nucleus via polar fenestre. The nuclear membrane remains intact. As the chloroplasts migrate further apart, the spindle pole-to-pole distance increases. By metaphase, daughter-cell lobes are discernible as a cleavage furrow, which appears as early as prophase, and begins to incise the cell. A single Golgi apparatus is situated near the spindle pole; the flagellar apparatus lies adjacent to the pole. The cleavage furrow continues to constrict the cell, resulting in a narrowing isthmus containing the elongate microbody, nucleus and a rootlet system connecting the basal bodies of the daughter flagella. At telophase, no extra-nuclear microtubular systems other than the previously observed rootlet are present and the nuclei remain separated from each other. In cells undergoing multiple divisions to produce more than two daughter cells, the orientation of organelles changes somewhat, with the basal bodies and the Golgi apparatus separating daughter nuclei prior to the onset of cytokinesis. The mechanics of mitosis in Mantoniella are compared with other green monads and the evolutionary implications discussed.  相似文献   

11.
A. Schulz 《Protoplasma》1988,142(2-3):176-187
Summary The spatial and temporal organization of the microtubular cytoskeleton at the transitional stage of mitosis and cytokinesis has been studied in the chaetophoralean green algaAphanochaete magna using indirect immunofluorescence light microscopy and transmission electron microscopic analysis of serial sections including computer-aided three-dimensional reconstruction. At late mitosis, elaborate asterlike microtubule systems including bundles interconnecting both centriolar regions are present. These systems disappear a the onset of interzonal spindle disintegration. The incipient phycoplast consists of a star-shaped microtubule assemblage projecting from the intact interzonal spindle. It develops strongly at the time of spindle disintegration, later on it becomes compressed by daughter nuclei movement. Cell plate formation is associated with a two-dimensional phycoplast. Phycoplast microtubules remain for a while associated with the completed cross wall but finally they depolymerize. The general occurrence of astral microtubule systems (includingA. magna) is evaluated. The subsequent developmental stages of the phycoplast, formation, maturation and depolymerization, are discussed.Abbreviations IF immunofluorescence - IZS interzonal spindle - MT microtubule - MTOC microtubule organizing center - TEM transmission electron microscopy  相似文献   

12.
Cytokinesis in apical cells of actively growing cultures of Cephaleuros parasiticus Karsten sporangiate thalli was examined with transmission electron microscopy. A massive, interzonal cytokinetic microtubule spindle is anchored at its poles to the medial surfaces of the daughter nuclei at telophase. Later, the daughter nuclei are widely separated and no longer associated with the interzonal spindle; however, the spindle retains its shape and becomes a distinct phragmoplast with an array of vesicles, presumably derived from dictyosomes, aligned in the division plane. Fusion of the vesicles gives rise to a thin cell plate. Some bundles of microtubules in the spindle appear to mark the sites of plasmodesmata formation, but no endoptasmic reticulum is directly involved in plasmodesmata formation. No infurrowing or phycoplast array of microtubules is involved in the cytokinesis. The relationship, if any. between the metaphase-anaphase mitotic microtubule system and the interzonal cytokinetic spindle has not been determined. Cephaleuros parasiticus isone of only four green algae now known to contain a higher plant-like phragmoplast and cytokinetic process. The observations reported can be interpreted as very strong evidence for a phylogenetic affinity between the Trentepohliaceae and the Charophyceae, but consideration of ulvophycean features of the Trentepohliaceae such as motile cell ultrastructure and life histories precludes unequivocal assignment of the family to either the Charophyceae or Ulvophyceae.  相似文献   

13.
THE STRUCTURE AND FORMATION OF CILIA AND FILAMENTS IN RUMEN PROTOZOA   总被引:17,自引:16,他引:1       下载免费PDF全文
The large oligotrich rumen protozoa Diplodinium ecaudatum and Ophryoscolex caudatus have been studied by electron microscopy during interphase and division. The structure of mature cilia is contrasted with that seen during their formation particularly in a tuft where development lags and is arrested. Here the shaft is only a few micra long and is composed of filaments that have circular cross-sections not in the typical circular arrangement. In their diameter and appearance the filaments are similar to filaments associated with the nuclei during division. The macronucleus has within it randomly directed filaments, while the micronucleus contains well aligned filaments and other arrangements typical of an intranuclear mitotic process. An extranuclear filament system is also present and is elaborated during division. The infraciliary filament system is particularly elaborate in these organisms. Filaments ranging from 14 to 22 mµ have been observed with some tendency for a bimodal distribution in diameters of 15 and 21 mµ. Formation of such filaments has been observed and consists of an initial orientation of very fine elements followed by filament formation. The observations are discussed in relation to filament involvements in cell movements. The concepts are discussed that filaments are metastable structures and that the transitions from one state to another are functionally significant.  相似文献   

14.
The mitotic apparatus (MA) of the giant ameba, Chaos carolinensis, has characteristic sequences of microtubule arrays and deployment of nuclear envelope fragments. If mitotic organisms are subjected to 2°C for 5 min, the MA microtubules are completely degraded, and the envelope fragments are released from the chromosomes which remain condensed but lose their metaphase-plate orientation. On warming, microtubules reform but show partial loss of their parallel alignment; displacement of the envelope fragments persists or is increased by microtubule reformation. This study demonstrates that cooling causes destruction of microtubules and intermicrotubular cross-bonds and further shows that such controlled dissolution and reformation can provide an in vivo test sequence for studies on the effects of inhibitor-compounds on microtubule subunit aggregation. Urea, at the comparatively low concentration of 0.8 M, inhibited reformation following cooling and rewarming but was ineffective in altering microtubules that had formed before treatment.  相似文献   

15.
The role of microtubules and microtubule nucleating sites in the unicell, Ochromonas has been examined through the use of two mitotic inhibitors, isopropyl N-phenylcarbamate (IPC) and isopropyl N-3-chlorophenyl carbamate (CIPC). Although IPC and CIPC have little or no effect on intact microtubules, the assembly of three separate sets of microtubules in Ochromonas has been found to be differentially affected by IPC and CIPC. The assembly of flagellar microtubules after mechanical deflagellation is partially inhibited; the reassembly of rhizoplast microtubules after pressure depolymerization is totally inhibited (however, macrotubules may form at the sites of microtubule initiation or elsewhere); and, the reassembly of the beak set of microtubules after pressure depolymerization may be unaffected although similar concentrations of IPC and CICP completely inhibit microtubule regeneration on the rhizoplast. These effects on microtubule assembly, either inhibitory or macrotubule inducing, are fully reversible. The kinetics of inhibition and reversal are found to be generally similar for both flagellar and cell shape regeneration. Incorporation data suggest that neither IPC nor CIPC has significant effects on protein synthesis in short term experiments. Conversely, inhibiting protein synthesis with cycloheximide has little effect on microtubule regeneration when IPC or CIPC is removed. Although the exact target for IPC and CIPC action remains uncertain, the available evidence suggests that the microtubule protein pool or the microtubule nucleating sites are specifically and reversibly affected. Comparative experiments using the mitotic inhibitor colchicine indicate some similarities and differences in its mode of action with respect to that of IPC and CIPC on assembly and disassembly of microtubules in these cells.  相似文献   

16.
The mitotic, micronuclear division of the heterotrichous genus Blepharisma has been studied by electron microscopy. Dividing ciliates were selected from clone-derived mass cultures and fixed for electron microscopy by exposure to the vapor of 2% osmium tetroxide; individual Blepharisma were encapsulated and sectioned. Distinctive features of the mitosis are the presence of an intact nuclear envelope during the entire process and the absence of centrioles at the polar ends of the micronuclear figures. Spindle microtubules (SMT) first appear in advance of chromosome alignment, become more numerous and precisely aligned by metaphase, lengthen greatly in anaphase, and persist through telophase. Distinct chromosomal and continuous SMT are present. At telophase, daughter nuclei are separated by a spindle elongation of more than 40 µ, and a new nuclear envelope is formed in close apposition to the chromatin mass of each daughter nucleus and excludes the great amount of spindle material formed during division. The original nuclear envelope which has remained structurally intact then becomes discontinuous and releases the newly formed nucleus into the cytoplasm. The micronuclear envelope seems to lack the conspicuous pores that are typical of nuclear envelopes. The morphology, size, formation, and function of SMT and the nature of micronuclear division are discussed.  相似文献   

17.
Gametogenesis in Atractomorpha porcata Hoffman was initiated b the synchronous mitotic division of nuclei within a multinucleate gametangium. Uninucleate gametes were subsequently produced following two series of cytokinetic divisions. The first series involved the formation of phycoplast microtubules (phycoplastic cytokinesis), whereas the second series did not (nonphycoplastic cytokinesis). Centrioles were connected by a rudimentary striated distal fiber by the time they migrated to the planes of division preceding the first series of cytokinetic division. These first divisions produced binucleate gametocytes. A well-developed flagellar apparatus lay near the cell surface in close proximity to each nucleus of the gametocyte prior to the second series of cytokinetic divisions that produced the uninucleate gametes. As seen in apical view, the paired basal bodies were directly opposed, with no lateral displacement of their longitudinal axes. In lateral view, the paired basal bodies diverged from one another at an angle of 130–180° (female) or 170–180° (male) and were connected by an arched, distal striated fiber about 670–750 nm long and 600 nm at its widest part. Four electron-opaque, pyramid-shaped lateral bodies flanked the basal bodies in close contact with their undersurfaces. The flagellar roots demonstrated a cruciate arrangement, with s = 6–9 over 1 (female gametes) or 7–10 over 1 (male gametes) microtubules and d= 2 microtubules. In male gametes, one of the multistranded roots was located close to the eyespot, and a second system of cytoskeletal microtubules was detected internally. Based on gamete ultrastructure, Atractomorpha porcata appears to be the most undifferentiated member of the genus.  相似文献   

18.
The mitosis and cytokinesis of Draparnaldia glomerata as examined here by transmission electron microscopy are in many aspects similar to those described earlier for other chaetophoralean algae. The standard chaetophoralean model of the mechanism of mitosis/cytokinesis is described in detail. Characteristic in this pattern is the movement of sets of centrioles towards the nuclear poles followed by a proliferation of extranuclear microtubules at prophase, the (partial) fusion of centrioles with the spindle poles at metaphase and anaphase, the simultaneous separation of chromosomes apparently caused by both spindle elongation and shortening of the chromosomal microtubules at anaphase, the expulsion of the centrioles by daughter nuclei and finally the non–persistent spindle at telophase. Cytokinesis takes place by formation of a cell plate associated with phycoplast microtubules. The possible function of the phycoplast in cytokinesis in Draparnaldia is discussed.  相似文献   

19.
Pseudendoclonium basiliense and Trichosarcina polymorpha are essentially identical with regard to the fine structural details of cell division even though one was previously classified in the Chaetophorales and the other in the Ulvales. Cell division in the 2 genera is also shown to be like that in Ulva, as previously suggested might be the case. The combination of mitotic and cytokinetic characteristics common to the 3 genera is distinctive: (1) precocious development of a thick cleavage furrow, (2) centrioles distinctly lateral to polar fenestrae, (3) collapse of the interzonal spindle at telophase, and. (4) a cleavage furrow not associated with microtubules. It is suggested that features of vegetative cell division presently provide the best, characteristics for defining the Ulvaceae and that the use of growth habit should be abandoned. Despite the fact that a phycoplast is not present, in these algae, it is concluded that their affinities lie with genera that do possess a phycoplast.  相似文献   

20.
The ultrastructure of mitotic nuclei of the promastigote Leishmania mexicana ssp. was studied by serial thin sections and three-dimensional reconstructions of each divisional stage. At the beginning of nuclear division (equatorial stage), a set of six dense plaques located about the equatorial region of the nucleus and a microtubular spindle develops in the two opposing poles of the nucleus (two sets of polar microtubules). The microtubular mitotic spindle is entirely intranuclear with the nuclear membrane persisting through mitosis. The polar spindle consists of a discrete bundle of about 50 microtubules and the equatorial spindle is formed by about 100 microtubules. The spindle may contain several continuous microtubules, but no microtubular organizing centres were observed in association with the spindle. The plaques and hemiplaques are associated with microtubular bundles; some of the spindle microtubules converge on kinetochore-like plaques. It is suggested that the spindle has a special significance in the physiology of mitosis. The two sets of hemiplaques may guide the separation of the daughter genomes. At the beginning of the elongational stage the mitotic plaques split into halves and each set of half-plaques migrates to one pole. It is concluded that the dense plaques play a kinetochore-like role and thus Leishmania mexicana ssp. may have six chromosomal units. Mitotic events of this species are essentially similar to those of Trypanosoma cruzi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号