首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Trypanosoma brucei procyclic trypomastigotes were made permeable by using digitonin (0-70 micrograms/mg of protein). This procedure allowed exposure of coupled mitochondria to different substrates. Only succinate and glycerol phosphate (but not NADH-dependent substrates) were capable of stimulating oxygen consumption. Fluorescence studies on intact cells indicated that addition of succinate stimulates NAD(P)H oxidation, contrary to what happens in mammalian mitochondria. Addition of malonate, an inhibitor of succinate dehydrogenase, stimulated NAD(P)H reduction. Malonate also inhibited intact-cell respiration and motility, both of which were restored by further addition of succinate. Experiments carried out with isolated mitochondrial membranes showed that, although the electron transfer from succinate to cytochrome c was inhibitable by antimycin, NADH-cytochrome c reductase was antimycin-insensitive. We postulate that the NADH-ubiquinone segment of the respiratory chain is replaced by NADH-fumarate reductase, which reoxidizes the mitochondrial NADH and in turn generates succinate for the respiratory chain. This hypothesis is further supported by the inhibitory effect on cell growth and respiration of 3-methoxyphenylacetic acid, an inhibitor of the NADH-fumarate reductase of T. brucei.  相似文献   

2.
Two succinate thiokinase activities specific for either adenine or guanine nucleotides have been found in Trypanosoma brucei. Key glycolytic and citric acid cycle enzymes were measured to show repression of glycolysis and derepression of the citric acid cycle in the procyclic form, relative to the bloodstream form. A marked rise in adenine-linked succinate thiokinase activity accompanied a rise in activity of citric acid cycle enzymes. However, guanine-linked succinate thiokinase was found to increase only slightly in activity. These results implicate the adenine-linked enzyme as an essential component of the citric acid cycle, whereas the guanine-linked enzyme appears to be under separate control. This communication also reports for the first time the occurrence of citrate synthase activity in the bloodstream (long slender) form of T. brucei.  相似文献   

3.
4.
The procyclic form of Trypanosoma brucei is a parasitic protozoan that normally dwells in the midgut of its insect vector. In vitro, this parasite prefers d-glucose to l -proline as a carbon source, although this amino acid is the main carbon source available in its natural habitat. Here, we investigated how l -proline is metabolized in glucose-rich and glucose-depleted conditions. Analysis of the excreted end products of (13)C-enriched l -proline metabolism showed that the amino acid is converted into succinate or l -alanine depending on the presence or absence of d-glucose, respectively. The fact that the pathway of l -proline metabolism was truncated in glucose-rich conditions was confirmed by the analysis of 13 separate RNA interference-harboring or knock-out cell lines affecting different steps of this pathway. For instance, RNA interference studies revealed the loss of succinate dehydrogenase activity to be conditionally lethal only in the absence of d-glucose, confirming that in glucose-depleted conditions, l -proline needs to be converted beyond succinate. In addition, depletion of the F(0)/F(1)-ATP synthase activity by RNA interference led to cell death in glucose-depleted medium, but not in glucose-rich medium. This implies that, in the presence of d-glucose, the importance of the F(0)/F(1)-ATP synthase is diminished and ATP is produced by substrate level phosphorylation. We conclude that trypanosomes develop an elaborate adaptation of their energy production pathways in response to carbon source availability.  相似文献   

5.
Ornithine decarboxylase (ODC) activity was measured in procyclic forms of Trypanosoma brucei brucei grown in semidefined medium. ODC activity rapidly increased in late log-phase cells which were resuspended in fresh medium. A biphasic induction curve similar to that observed in mammalian cells was observed over an 18-hr period. ODC activity increased 4.5- to 25-fold over control levels measured at zero time. Actinomycin D and cycloheximide inhibited induction by greater than 90%. Polyamines at a level not inhibitory to growth (10 microM) inhibited ODC induction, but only by 30-50%, late in the induction period. Putrescine inhibited the first peak of induction and suppressed activity at 14 hr by 75%. Polyamine analogs such as bis(ethyl)spermidine were not effective suppressors of ODC activity. The half-life of ODC in procyclic forms grown in the presence of cycloheximide was greater than 6 hr, while that of bloodstream trypomastigotes in mice treated with cycloheximide was 5 hr. A single dose of the ODC inhibitor DL-alpha-difluoromethylornithine given to infected rats or mice suppressed trypanosome ODC activity greater than 90% for more than 7 hr. These studies indicate that although trypanosome ODC increases rapidly under log growth conditions, it is less susceptible to fluctuation and external control than the enzyme from mammalian sources. The latter may be a factor in the clinical efficacy of ODC inhibitors.  相似文献   

6.
Apoptosis is a phenomenon previously associated exclusively with metazoan organisms. We show here that procyclic insect form Trypanosoma brucei rhodesiense, a protozoan parasite, when treated in vitro with concanavalin A displayed several features normally associated with apoptosis in metazoan cells. Lectin treatment induced cleavage of nuclear DNA into oligonucleosomal fragments, suggesting activation of an endogenous nuclease in the parasite. Treated trypanosomes, although agglutinated and non-motile, exhibited fluorescence after treatment with the vital stain fluorescein diacetate and retained (3)H-uridine indicating that their cell membranes remained intact during the period of DNA fragmentation. Electron micrographs showed characteristic morphology of cells undergoing apoptosis, including surface membrane vesiculation and migration of chromatin to the periphery of the nuclear membrane while mitochondria remained intact. These results suggest that treatment with concanavalin A triggers a cell death mechanism in T. b. rhodesiense similar to the process of apoptosis described in metazoa.  相似文献   

7.
Proline metabolism has been studied in procyclic form Trypanosoma brucei. These parasites consume six times more proline from the medium when glucose is in limiting supply than when this carbohydrate is present as an abundant energy source. The sensitivity of procyclic T. brucei to oligomycin increases by three orders of magnitude when the parasites are obliged to catabolize proline in medium depleted in glucose. This indicates that oxidative phosphorylation is far more important to energy metabolism in this latter case than when glucose is available and the energy needs of the parasite can be fulfilled by substrate level phosphorylation alone. A gene encoding proline dehydrogenase, the first enzyme of the proline catabolic pathway, was cloned. RNA interference studies revealed the loss of this activity to be conditionally lethal. Proline dehydrogenase defective parasites grew as wild-type when glucose was available, but, unlike wild-type cells, they failed to proliferate using proline. In parasites grown in the presence of glucose, proline dehydrogenase activity was markedly lower than when glucose was absent from the medium. Proline uptake too was shown to be diminished when glucose was abundant in the growth medium. Wild-type cells were sensitive to 2-deoxy-D-glucose if grown using proline as the principal carbon source, but not in glucose-rich medium, indicating that this non-catabolizable glucose analogue might also stimulate repression of proline utilization. These results indicate that the ability of trypanosomes to use proline as an energy source can be regulated depending upon the availability of glucose.  相似文献   

8.
The mitochondrial respiratory chain is comprised of four different protein complexes (I–IV), which are responsible for electron transport and generation of proton gradient in the mitochondrial intermembrane space. This proton gradient is then used by FoF1-ATP synthase (complex V) to produce ATP by oxidative phosphorylation. In this study, the respiratory complexes I, II, and III were affinity purified from Trypanosoma brucei procyclic form cells and their composition was determined by mass spectrometry. The results along with those that we previously reported for complexes IV and V showed that the respiratome of Trypanosoma is divergent because many of its proteins are unique to this group of organisms. The studies also identified two mitochondrial subunit proteins of respiratory complex IV that are encoded by edited RNAs. Proteomics data from analyses of complexes purified using numerous tagged component proteins in each of the five complexes were used to generate the first predicted protein-protein interaction network of the Trypanosoma brucei respiratory chain. These results provide the first comprehensive insight into the unique composition of the respiratory complexes in Trypanosoma brucei, an early diverged eukaryotic pathogen.Mitochondria are dynamic organelles essential for cellular life, death, and differentiation of virtually every eukaryotic cell. They house systems for energy production through oxidative phosphorylation, synthesis of key metabolites, and iron-sulfur cluster assembly. The oxidative phoshorylation system of eukaryotic mitochondria comprises five major complexes located in the mitochondrial (mt)1 inner membrane, and often abbreviated as mt complexes I–V. The redox energy of the substrates NADH and succinate is first converted into an electrochemical proton potential across the inner mt membrane by respiratory complexes I (NADH:ubiquinone reductase), II (SDH, succinate:ubiquinone reductase), III (bc1, ubiquinone:cytochrome c reductase), and IV (cytochrome c oxidase). The electrochemical proton potential is then used by complex V (FoF1-ATP synthase) to synthesize ATP from ADP and inorganic phosphate, a mechanism that has essentially remained unchanged from bacteria to human (1). However, parasitic organisms have exploited unique energy metabolic pathways by adapting to their natural host habitats (2). Indeed, the respiratory systems of parasites typically show greater diversity in electron transfer pathways than those of their host, and Trypanosoma brucei is no exception to this rule (3).T. brucei, the causative agent of human African trypanosomiasis (HAT), or sleeping sickness, is a blood-borne pathogenic parasite transmitted by tsetse flies. It has a complex life cycle that alternates between the bloodstream forms (BF) in the mammalian host and several stages in the insect vector starting with the procyclic form (PF) in the midgut. During T. brucei differentiation between the distinct life-cycle stages, the mitochondrion undergoes morphological and functional changes, and the parasite switches its energy metabolism from amino acid to glucose oxidation (4). BF cells, which live in sugar-rich environment, use energy metabolism predominantly through the glycolytic pathway (5). They contain no cytochrome-mediated respiratory chain and they possess a unique electron transport chain in the mitochondria, the glycerol-3-phosphate dehydrogenase and the salicyl hydroxamic acid (SHAM)-sensitive alternative oxidase, which is known as the trypanosome alternative oxidase (TAO) (6). Despite the absence of complete cytochrome-containing complexes III and IV in BF trypanosomes, a mt membrane potential is maintained and involves the hydrolytic activity of the FoF1-ATP synthase complex (7). Conversely, PF cells are dependent on the cytochrome-containing respiratory chain and ATP generated by conventional function of the FoF1-ATP synthase complex for their energy production (8, 9). The branched electron-transport chain contains four complexes that donate electrons to the ubiquinone pool, two NADH:ubiquinone oxidoreductases (complex I and a rotenone-insensitive enzyme), complex II, and glycerol-3-phosphate dehydrogenase. Reduced ubiquinol can be reoxidized by the transfer of electron to either the TAO, which does not translocate protons, or to the cytochrome-containing complexes III and IV that produce a proton motive force by translocation of protons and thus create essential membrane potential (10).Although the T. brucei genome has been sequenced (11), little information is available on the subunit composition of mt complexes I–V based on similarity searches. However, some respiratory complexes have been partially characterized in other trypanosomatids such as Crithidia fasciculata, T. cruzi, and Leishmania tarentolae (1215). In recent studies, we have determined the protein composition of complexes IV and V, and part of complex I purified from mitochondria of T. brucei PF cells (8, 16, 17, 25). These analyses revealed the uniqueness of respiratory complexes in trypanosomes, where large numbers of component proteins have no homologs outside of the Kinetoplastida.In this study, we focus on the comprehensive characterization of all respiratory complexes in T. brucei, collectively termed the respiratome. We report the composition of complexes II and III from PF cells, and extend the characterization of complex I by identifying additional protein constituents. This included the identification of two subunits of the respiratory complex IV, both encoded by mt edited RNAs. We also present a predicted protein-protein interaction network of the respiratome, which was generated using proteomics data collected from numerous tagged proteins in each of the complexes I–V. Our results provide a comprehensive insight into the unique composition of the respiratory complexes in one of the life-cycle stages of T. brucei.  相似文献   

9.
Trypanosoma brucei is a parasitic protist responsible for sleeping sickness in humans. The procyclic stage of T. brucei expresses a soluble NADH-dependent fumarate reductase (FRDg) in the peroxisome-like organelles called glycosomes. This enzyme is responsible for the production of about 70% of the excreted succinate, the major end product of glucose metabolism in this form of the parasite. Here we functionally characterize a new gene encoding FRD (FRDm1) expressed in the procyclic stage. FRDm1 is a mitochondrial protein, as evidenced by immunolocalization, fractionation of digitonin-permeabilized cells, and expression of EGFP-tagged FRDm1 in the parasite. RNA interference was used to deplete FRDm1, FRDg, or both together. The analysis of the resulting mutant cell lines showed that FRDm1 is responsible for 30% of the cellular NADH-FRD activity, which solves a long standing debate regarding the existence of a mitochondrial FRD in trypanosomatids. FRDg and FRDm1 together account for the total NADH-FRD activity in procyclics, because no activity was measured in the double mutant lacking expression of both proteins. Analysis of the end products of 13C-enriched glucose excreted by these mutant cell lines showed that FRDm1 contributes to the production of between 14 and 44% of the succinate excreted by the wild type cells. In addition, depletion of one or both FRD enzymes results in up to 2-fold reduction of the rate of glucose consumption. We propose that FRDm1 is involved in the maintenance of the redox balance in the mitochondrion, as proposed for the ancestral soluble FRD presumably present in primitive anaerobic cells.  相似文献   

10.
The enzyme NADH-fumarate reductase associated with the membrane fraction of Trypanosoma brucei procyclic trypomastigotes, can be solubilized by more than 50% when increasing the ionic strength to the equivalent of 150 mM KCl. The apparent KMs for NADH (125 microM) and fumarate (50 microM) remain close to those previously reported for the membrane-bound form of this enzyme. Other electron acceptors (i.e. oxygen or cytochrome c) appear to accept electrons in the absence of fumarate (KM for cytochrome c = 50 microM). The drug L-092,201 (Merck, Sharp and Dohme Research Laboratories, Rahway, NJ), an inhibitor of the membrane-bound fumarate reductase, also blocked the solubilized enzyme. Given the relatively high ionic strength of the intracellular environment we propose that, in vivo, the enzyme fumarate reductase is in the mitochondrial matrix or in the soluble fraction of another intracellular compartment.  相似文献   

11.
In Trypanosomatids, endocytosis and exocytosis occur exclusively at the flagellar pocket, a deep invagination of the plasma membrane where the flagellum extends from the cell. Both bloodstream and procyclic trypanosomes are capable of internalizing macromolecules. However, structures resembling coated vesicles were only identified in bloodstream form and not in procyclic form trypanosomes. Due to the apparent absence of coated vesicles in procyclics, the significance of receptor-mediated endocytosis in procyclic trypanosomes has been considered of minimal importance. We show that the flagellar pocket associated cysteine-rich acidic transmembrane protein (CRAM) may function as an high density lipoprotein receptor in the procyclic form trypanosome. Using anti-CRAM IgG we have characterized the process of CRAM-mediated endocytosis in procyclic form trypanosomes. The wild type procyclic trypanosome binds and internalizes anti-CRAM IgG but not the non-immune IgG in a saturable and time-dependent manner; the binding and uptake of (125)I-labeled anti-CRAM IgG are inhibited by excess unlabeled anti-CRAM IgG. Uptake and degradation of anti-CRAM IgG do not occur at 4 degrees C. At 28 degrees C, the internalized anti-CRAM IgG were efficiently degraded through a process that is inhibited by incubation at 4 degrees C and sensitive to the presence of chloroquine. The uptake and degradation of anti-CRAM IgG does not occur in the CRAM null mutant cell line. These results suggested that the uptake of anti-CRAM IgG in the wild type procyclics occurs via receptor-mediated endocytosis of the CRAM protein. Deletion of the cytoplasmic extension of CRAM drastically reduced the degradation but not the binding of anti-CRAM IgG. This result indicated that potential internalization signals may be present in the cytoplasmic extension of CRAM. This is the first time that the importance of receptor-mediated endocytosis in procyclic form trypanosomes has been demonstrated.  相似文献   

12.
13.
Using transformed procyclic trypanosomes, the synthesis, intracellular transport and secretion of wild-type and mutant variant surface glycoprotein (VSG) is characterized. We find no impediment to the expression of this bloodstream stage protein in insect stage cells. VSG receives a procyclic-type phosphatidylinositol-specific phospholipase C-resistant glycosyl phosphatidylinositol (GPI) anchor, dimerizes and is N-glycosylated. It is transported to the plasma membrane with rapid kinetics (t(1/2) approximately 1 h) and then released by a cell surface zinc-dependent metalloendoprotease activity, a possible homolog of leishmanial gp63. Deletion of the C-terminal GPI addition signal generates a soluble form of VSG that is exported with greatly reduced kinetics (t(1/2) approximately 5 h). Fusion of the procyclic acidic repetitive protein (PARP) GPI anchor signal to the C-terminus of the truncated VSG reporter restores both GPI addition and transport competence, suggesting that GPI anchors play a critical role in the folding and/or forward transport of newly synthesized VSG. The VSG-PARP fusion is also processed near the C-terminus by events that do not involve N-linked oligosaccharides and which are consistent with GPI side chain modification. This unexpected result suggests that GPI processing may be influenced by adjacent peptide sequence or conformation.  相似文献   

14.
Trypanosoma brucei strain 366D trypomastigotes grown at 37 degrees C in the presence of a human fibroblast cell line formed foci underneath the feeder cells whereas trypanosomes grown in the presence of a human epithelial cell line grew only in the culture supernatant. A culture system was developed to study the differentiation of bloodstream trypomastigotes grown in the epithelial cell system into procyclic trypomastigotes at 27 degrees C. The morphological differentiation into the procyclic form was complete by 48 h. Cell division did not occur until 30-40 h after transfer to 27 degrees C. Various characteristics of this system were examined, including the effect of the feeder layer, the type of medium, the presence of the metabolites cis-aconitate and citrate, the preadaptation period, and the trypanosome cell concentration. The respiration of the recently differentiated procyclic cells was less sensitive to inhibition by CN- than that of established procyclic forms, implying a delayed appearance of complete mitochondrial oxidative pathways. This trypanosome differentiation system has the advantage that the animal host is not needed and the entire process is carried out in in vitro culture.  相似文献   

15.
16.
M C Field  A K Menon    G A Cross 《The EMBO journal》1991,10(10):2731-2739
Cells of the insect (procyclic) stage of the life cycle of the African trypanosome, Trypanosoma brucei, express an abundant stage-specific glycosylated phosphatidylinositol (GPI) anchored glycoprotein, the procyclic acidic repetitive protein (PARP). The anchor is insensitive to the action of bacterial phosphatidylinositol-specific phospholipase C (PI-PLC), suggesting that it contains an acyl-inositol. We have recently described the structure of a PI-PLC resistant glycosylphosphatidylinositol, PP1, which is specific to the procyclic stage, and have presented preliminary evidence that the phosphatidylinositol portion of the protein-linked GPI on PARP has a similar structure. In this paper we show, by metabolic labelling with [3H]fatty acids, that the PARP anchor contains palmitate esterified to inositol, and stearate at sn-1, in a monoacylglycerol moiety, a structure identical to PP1. Using pulse-chase labelling, we show that both fatty acids are incorporated into the GPI anchor from a large pool of metabolic precursors, rather than directly from acyl-CoA. We also demonstrate that the addition of the GPI anchor moiety to PARP is dependent on de novo protein synthesis, excluding the possibility that incorporation of fatty acids into PARP can occur by a remodelling of pre-existing GPI anchors. Finally we show that the phosphatidylinositol (PI) species that are utilized for GPI biosynthesis are a subpopulation of the cellular PI molecular species. We propose that these observations may be of general validity since several other eukaryotic membrane proteins (e.g. human erythrocyte acetylcholine esterase and decay accelerating factor) have been reported to contain palmitoylated inositol residues.  相似文献   

17.
The differentiation of mammalian stage Trypanosoma brucei bloodstream forms comprising predominantly parasites of intermediate and stumpy morphology to the procyclic forms characteristic for the insect midgut stage was studied in vitro. Differentiation of the cell population occurred synchronously as judged by the synthesis of the surface glycoprotein, procyclin, characteristic of the arising procyclic forms and the loss of the membrane-form variant surface glycoprotein, the coat protein of bloodstream forms. The change in surface antigens took place within 12 h in the absence of cell growth; subsequently, the procyclic cells divided exponentially. As defined in this study, T. brucei may be a useful model to follow other changes in gene expression, metabolism or ultrastructure during differentiation of a unicellular eucaryote.  相似文献   

18.
The expression of procyclic acidic repetitive protein (PARP) by Trypanosoma brucei is strongly induced during the transition of bloodstream form to cultured procyclic trypomastigotes in vitro. The membrane-associated protein is distinguished by a central domain consisting of tandemly repeated glutamate-proline dipeptides. The trypanosome genome contains eight PARP genes, at least four of which are expressed. A minimum of four distinct PARP mRNA species comprises two classes of PARP mRNA, based upon divergent 3' untranslated region sequences, and these mRNAs encode polypeptides that exhibited an inverse relation between molecular weight and isoelectric point. Comparative analysis of PARP gene structure indicated that these polypeptides differ by variation in size of the dipeptide repeat domain. Comparison of PARP genes and polypeptides of three independent T. brucei isolates suggested that PARP is not a homogeneous species but instead represents a family of polymorphic proteins.  相似文献   

19.
Colasante C  Ellis M  Ruppert T  Voncken F 《Proteomics》2006,6(11):3275-3293
Peroxisomes are present in nearly every eukaryotic cell and compartmentalize a wide range of important metabolic processes. Glycosomes of Kinetoplastid parasites are peroxisome-like organelles, characterized by the presence of the glycolytic pathway. The two replicating stages of Trypanosoma brucei brucei, the mammalian bloodstream form (BSF) and the insect (procyclic) form (PCF), undergo considerable adaptations in metabolism when switching between the two different hosts. These adaptations involve also substantial changes in the proteome of the glycosome. Comparative (non-quantitative) analysis of BSF and PCF glycosomes by nano LC-ESI-Q-TOF-MS resulted in the validation of known functional aspects of glycosomes and the identification of novel glycosomal constituents.  相似文献   

20.
The procyclic acidic repetitive protein (PARP) of Trypanosoma brucei was purified by cell fractionation followed by ion-exchange and concanavalin A-Sepharose affinity chromatography. PARP is membrane-bound and comprises about 1% of the total procyclic trypanosome protein or 6 x 10(6) molecules per parasite. The results of NH2-terminal sequencing and amino acid analysis indicate that PARP is processed by removal of an N-terminal signal sequence and the hydrophobic COOH terminus. Metabolic labeling of PARP with [3H] ethanolamine is consistent with attachment of the protein to the membrane via a glycosylphosphatidylinositol anchor. The glycolipid can be removed by base hydrolysis or nitrous acid deamination but is not susceptible to bacterial phosphatidylinositol-specific phospholipase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号