首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA) is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67), both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11–E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development.  相似文献   

2.
采用水培法,通过准确控制营养液溶氧浓度,研究了外源γ-氨基丁酸(GABA)对低氧胁迫0~8 d ‘西域一号’甜瓜幼苗根系GABA代谢及氨基酸含量的影响.结果表明:与通气对照相比,低氧处理的甜瓜幼苗正常生长受到严重抑制,其根系谷氨酸脱羧酶(GAD)、谷氨酸脱氢酶(GDH)、谷氨酸合成酶(GOGAT)、谷氨酰胺合成酶(GS)、丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)活性以及GABA、丙酮酸、丙氨酸、天冬氨酸含量均显著提高,而谷氨酸和α 酮戊二酸含量在处理4~8 d均显著降低.与低氧处理相比,外源GABA处理有效缓解了低氧胁迫对幼苗根系生长的抑制作用,同时甜瓜根系内源GABA、谷氨酸、α-酮戊二酸、天冬氨酸含量显著提高,但GAD、GDH、GOGAT、GS、ALT、AST活性在整个处理过程中均显著降低,丙酮酸和丙氨酸含量也显著降低.低氧同时添加GABA和γ-乙烯基 γ-氨基丁酸(VGB)处理显著降低了低氧胁迫下GABA的缓解效应.低氧胁迫下外源GABA被植物根系吸收后,通过反馈抑制GAD活性维持较高的Glu含量,保持植物体内碳、氮代谢平衡,维持正常生理代谢,从而缓解低氧胁迫对甜瓜幼苗的伤害.  相似文献   

3.
Abstract: Five inhibitors of the GABA degrading enzyme GABA-aminotransferase (GABA-T), viz., gabaculine, γ-acetylenic GABA, γ-vinyl GABA, ethanolamine O -sulphate, and aminooxyacetic acid, as well as GABA itself and the antiepileptic sodium vdproate were administered to mice in doses equieffective to raise the electroconvulsive threshold by 30 V. The animals were killed at the time of maximal anticonvulsant effect of the respective drugs and GABA, GABA-T and glutamate decarboxylase (GAD) were determined in whole brain and synaptosomes, respectively. The synaptosomal fraction was prepared from brain by conventional ultracentrifugation procedures. All drugs studied brought about significant increases in both whole brain and synaptosomal GABA concentrations, and, except GABA itself, inhibited the activity of GABA-T. Furthermore, all drugs, except GABA and γ-acetylenic GABA, activated GAD in the synaptosomal fraction. This was most pronounced with ethanolamine O -sulphate, which induced a twofold activation of this enzyme but exerted only a weak inhibitory effect on GABA-T. The results suggest that activation of GAD is an important factor in the mechanism by which several inhibitors of GABA-T and also valproate increase GABA concentrations in nerve terminals, at least in the relatively non-toxic doses as used in this study.  相似文献   

4.
Abstract: Four catalytic inhibitors of GABA aminotransferase (gabaculine, γ-acetylenic GABA, γ-vinyl GABA, ethanolamine O -sulphate) as well as aminooxyacetic acid and valproate were studied for effects on neurochemical assays for GABA synthesis, receptor binding, uptake and metabolism in mouse and rat brain preparations. Gabaculine did not interfere with GABA synthesis as reflected by the activity of glutamate decarboxylase (GAD), it was only a weak inhibitor (IC50= 0.94 mM) of GABA receptor binding sites but was a moderately potent inhibitor of GABA uptake (IC50= 81 μM) and very potent (IC50= 1.8 μM) with respect to inhibition of the GABA-metabolizing enzyme GABA aminotransferase (GABA-T). γ-Acetylenic GABA was a weak inhibitor of GAD and GABA binding (IC50 > 1 mM), but virtually equipotent to inhibit uptake and metabolism of GABA (IC50 560 and 150 μM, respectively). This was very similar to γ-vinyl GABA, except that this drug did not decrease GAD activity. Ethanolamine O -sulphate was found to show virtually no inhibition of GAD and GABA uptake, but was a fairly potent inhibitor of GABA binding (IC50= 67 μM) and in this respect, 500 times more potent than as an inhibitor of GABA-T. Aminooxyacetic acid was a powerful inhibitor of both GAD and GABA-T (IC50 14 and 2.7 μM, respectively), but had very little affinity to receptor and uptake sites for GABA. Valproate showed no effects on GABA neurochemical assays which could be related to anticonvulsant action. The present results suggest that the anticonvulsant properties of the four catalytic inhibitors of GABA-T tested are at least in part mediated through a direct influence on GABA receptors and uptake sites.  相似文献   

5.
Abstract: Defective herpes simplex virus (HSV) vectors containing glutamic acid decarboxylase (GAD) cDNAs, either GAD65 or GAD67, were used to examine GAD function and GABA synthesis in rat cortical astrocytes, CNS cells that do not endogenously synthesize GABA. GAD vector infection resulted in isoform-specific expression of GAD as determined by western blotting and immunohistochemistry. Astrocytes infected with a β-galactosidase vector or uninfected expressed no GAD and contained no detectable GABA. GABA was detected in glial fibrillary acid protein-expressing cells after GAD65 vector infection. Significant amounts of GABA, as determined by HPLC, were synthesized in cultures infected with either GAD vector. The levels of GABA in GAD67 vector-infected cells were almost twofold higher than in GAD65 vector-infected cells. Vector infection did not alter levels of other intracellular amino acids. GABA was tonically released from astrocytes infected with the GAD67 vector, but no increase in release could be detected after treatment of the cells with K+, veratridine, glutamate, or bradykinin. The ability to transduce astrocytes so that they express GAD and thereby increase GABA levels provides a potential strategy for the treatment of neurologic disorders associated with hyperexcitable or diminished inhibitory activity.  相似文献   

6.
Rats were given γ-vinyl GABA (4-amino-hex-5-enoic acid), a new irreversible inhibitor of GABA aminotransferase (GABA-T), by daily subcutaneous injection (100mgkg) for 11 days. Amino acids were quantitated in the brains of the γ-vinyl GABA-treated and control animals 24 h after the last injection, and enzyme activities of GABA-T and glutamic acid decarboxylase (GAD) were measured. Chronic administration of γ-vinyl GABA produced a 150% increase in brain GABA content, along with marked increases in the contents of B-alanine and homocarnosine. Brain GABA-T activity was reduced by 26%, and GAD activity was reduced by 22%. In addition, γ-vinyl GABA caused a marked increase in hypotaurine content in rat brain, suggesting that it acts as an inhibitor of hypotaurine dehydrogenase, and it produced significant decreases in brain contents of glutamine and threonine. Although it is an effective GABA-T inhibitor, γ-vinyl GABA apparently affects several other brain enzymes as well, and it may not be an ideal drug for elevating brain GABA levels in man.  相似文献   

7.
Summary The distribution of L-glutamate decarboxylase (GAD), a major biosynthetic enzyme for gamma-aminobutyric acid (GABA), was examined in the oviduct and ovary of the rat by means of an immunohistochemical technique. The polyclonal antiserum raised against brain GAD showed specific immunoreaction in some non-neuronal elements of the sex organs. In the oviduct, the inner layer of the mucosa was predominantly labelled. The selective distribution of GAD immunoreactivity in epithelial cells of the oviduct is consistent with former findings for GABA-like immunoreactivity in the same organ, indicating that the GAD-catalyzed reaction may be a major biosynthetic pathway for GABA even in these cells. In the ovary, vacuole-like formations within the follicular fluid and oocytes showed intense, specific staining. The occurrence of GAD immunoreactivity inside developing ovarian follicles including the oocyte may suggest a role for GABA related to follicular development and certain functions concerning the ovum.  相似文献   

8.
A large amount of gamma-aminobutyric acid (GABA) was found to accumulate in tomato (Solanum lycopersicum) fruits before the breaker stage. Shortly thereafter, GABA was rapidly catabolized after the breaker stage. We screened the GABA-rich tomato cultivar 'DG03-9' which did not show rapid GABA catabolism after the breaker stage. Although GABA hyperaccumulation and rapid catabolism in fruits is well known, the mechanisms are not clearly understood. In order to clarify these mechanisms, we performed comparative studies of 'Micro-Tom' and 'DG03-9' fruits for the analysis of gene expression levels, protein levels and enzymatic activity levels of GABA biosynthesis- and catabolism-related enzymes. During GABA accumulation, we found positive correlations among GABA contents and expression levels of SlGAD2 and SlGAD3. Both of these genes encode glutamate decarboxylase (GAD) which is a key enzyme of GABA biosynthesis. During GABA catabolism, we found a strong correlation between GABA contents and enzyme activity of alpha-ketoglutarate-dependent GABA transaminase (GABA-TK). The contents of glutamate and aspartate, which are synthesized from GABA and glutamate, respectively, increased with elevation of GABA-TK enzymatic activity. GABA-TK is the major GABA transaminase form in animals and appears to be a minor form in plants. In 'DG03-9' fruits, GAD enzymatic activity was prolonged until the ripening stage, and GABA-TK activity was significantly low. Taken together, our results suggest that GAD and GABA-TK play crucial roles in GABA accumulation and catabolism, respectively, in tomato fruits.  相似文献   

9.
Gamma-aminobutyric acid (GABA) is synthesized by two isoforms of the pyridoxal 5'-phosphate-dependent enzyme glutamic acid decarboxylase (GAD65 and GAD67). GAD67 is constitutively active and is responsible for basal GABA production. In contrast, GAD65, an autoantigen in type I diabetes, is transiently activated in response to the demand for extra GABA in neurotransmission, and cycles between an active holo form and an inactive apo form. We have determined the crystal structures of N-terminal truncations of both GAD isoforms. The structure of GAD67 shows a tethered loop covering the active site, providing a catalytic environment that sustains GABA production. In contrast, the same catalytic loop is inherently mobile in GAD65. Kinetic studies suggest that mobility in the catalytic loop promotes a side reaction that results in cofactor release and GAD65 autoinactivation. These data reveal the molecular basis for regulation of GABA homeostasis.  相似文献   

10.
The GABA-synthesizing enzyme glutamic acid decarboxylase (GAD) is expressed in pancreatic beta-cells and GABA has been suggested to play a role in islet cell development and function. Mouse beta-cells predominantly express the larger isoform of the enzyme, GAD67, and very low levels of the second isoform, GAD65. Yet GAD65 has been shown to be a target of very early autoimmune T-cell responses associated with beta-cell destruction in the non-obese diabetic (NOD) mouse model of Type 1 diabetes. Mice deficient in GAD67, GAD65 or both were used to assess whether GABA is important for islet cell development, and whether GAD65 is required for initiation of insulitis and progression to Type 1 diabetes in the mouse. Lack of either GAD65 or GAD67 did not effect the development of islet cells and the general morphology of islets. When GAD65-/-(129/Sv) mice were backcrossed into the NOD strain for four generations, GAD65-deficient mice developed insulitis similar to GAD65+/+ mice. Furthermore, at the low penetrance of diabetes in this backcross, GAD65-deficient mice developed disease at the same rate and incidence as wildtype mice. The results suggest that GABA generated by either GAD65 or GAD67 is not critically involved in islet formation and that GAD65 expression is not an absolute requirement for development of autoimmune diabetes in the NOD mouse.  相似文献   

11.
GABA, a major inhibitory neurotransmitter of the brain, is also present at high concentration in pancreatic islets. Current evidence suggests that within islets GABA is secreted from beta-cells and regulates the function of mantle cells (alpha- and delta-cells). In the nervous system GABA is stored in, and secreted from, synaptic vesicles. The mechanism of GABA secretion from beta-cells remains to be elucidated. Recently the existence of synaptic-like microvesicles has been demonstrated in some peptide-secreting endocrine cells. The function of these vesicles is so far unknown. The proposed paracrine action of GABA in pancreatic islets makes beta-cells a useful model system to explore the possibility that synaptic-like microvesicles, like synaptic vesicles, are involved in the storage and release of non-peptide neurotransmitters. We report here the presence of synaptic-like microvesicles in beta-cells and in beta-cells. Some beta-cells in culture were found to extend neurite-like processes. When these were present, synaptic-like microvesicles were particularly concentrated in their distal portions. The GABA synthesizing enzyme, glutamic acid decarboxylase (GAD), was found to be localized around synaptic-like microvesicles. This was similar to the localization of GAD around synaptic vesicles in GABA-secreting neurons. GABA immunoreactivity was found to be concentrated in regions of beta-cells which were enriched in synaptic-like microvesicles. These findings suggest that in beta-cells synaptic-like microvesicles are storage organelles for GABA and support the hypothesis that storage of non-peptide signal molecules destined for secretion might be a general feature of synaptic-like microvesicles of endocrine cells.  相似文献   

12.
Pakchoi plants were grown in 32 mM NO3? nutrient solution with or without 2.5 mM γ-aminobutyric acid (GABA) to investigate metabolite changes, gene and protein expression levels, and the activities of key enzymes related to nitrate metabolism in the leaves over a period of 0–12 days. High-nitrogen treatment enhanced plant growth and the NO3?, NO2?, NH4+, Gln, and Glu contents in the leaves; promoted the gene and protein expression of nitrate reductase (NR) and glutamate decarboxylase (GAD); and increased the activities of NR, nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), and GAD. The endogenous GABA concentration in the leaves was enhanced in parallel with the increase in GAD activity. The GABA-treated leaves displayed the greatest increases in the gene and protein expression levels of NR and GAD and in the activities of NR, NiR, GS, GOGAT, and GAD. In addition, accelerated rates of nitrate reduction and assimilation were detected, and these changes occurred concurrently with the observed increases in gene or protein expression and enzyme activity. As a result, the concentrations of NH4+, Gln, Glu, and endogenous GABA were significantly elevated, and the NO3? and NO2? contents were significantly decreased, in GABA-treated leaves compared with plants exposed to nitrogen-rich conditions. Our results reveal a potential positive that GABA may act as a nitrogen source to improve the plant growth and the most prominent effect of decreasing nitrate contents by accelerating NO3? reduction and assimilation. Exogenous GABA plays an important role in reducing the NO3? content of leaves, and thereby improves the ability to harvest leafy vegetables containing higher levels of endogenous GABA.  相似文献   

13.
Pig brain extracts from both soluble and membrane fractions were found to contain potent inhibitors for GABA synthesizing enzyme, GAD, referred to as endogenous GAD inhibitors (EGIs) and for the binding of GABA agonist, muscimol, referred to as muscimol binding inhibitors (MBIs). EGIs and MBIs were first purified through gel-filtration Bio-Gel P-2 columns, in which multiple activity peaks were observed. One of them appears to be co-eluted with eitherl-glutamate or GABA. However, others are clearly separated froml-glutamate or GABA. EGIs were found to be low MW (<1,800 dalton), heat and acid-base stable, negatively charged, non hydrophobic substances. MBIs were found to be low MW (<1,800 dalton) neutral or positively charged substances. MBIs had no effect on [3H]flunitrazepam (FNZP) binding, indicating that they are not endogenous benzodiazepine receptor ligands and they may act specifically on GABA binding site.Special issue dedicated to Dr. Frederick E. Samson  相似文献   

14.
In mammalian peripheral sympathetic ganglia GABA acts presynaptically to facilitate cholinergic transmission and postsynaptically to depolarize membrane potential. The GABA effect on parasympathetic pancreatic ganglia is unknown. We aimed to determine the effect of locally applied GABA on cat pancreatic ganglion neurons. Ganglia with attached nerve trunks were isolated from cat pancreata. Conventional intracellular recording techniques were used to record electrical responses from ganglion neurons. GABA pressure microejection depolarized membrane potential with an amplitude of 17.4 +/- 0.7 mV. Electrically evoked fast excitatory postsynaptic potentials were significantly inhibited (5.4 +/- 0.3 to 2.9 +/- 0.2 mV) after GABA application. GABA-evoked depolarizations were mimicked by the GABA(A) receptor agonist muscimol and abolished by the GABA(A) receptor antagonist bicuculline and the Cl(-) channel blocker picrotoxin. GABA was taken up and stored in ganglia during preincubation with 1 mM GABA; beta-aminobutyric acid application after GABA loading significantly (P < 0.05) increased depolarizing response to GABA (15.6 +/- 1.0 vs. 7.8 +/- 0.8 mV without GABA preincubation). Immunolabeling with antibodies to GABA, glial cell fibrillary acidic protein, protein gene product 9.5, and glutamic acid decarboxylase (GAD) immunoreactivity showed that GABA was present in glial cells, but not in neurons, and that glial cells did not contain GAD, whereas islet cells did. The data suggest that endogenous GABA released from ganglionic glial cells acts on pancreatic ganglion neurons through GABA(A) receptors.  相似文献   

15.
Abstract: When γ-aminobutyric acid aminotransferase (GABA-T) activity was measured in vitro in rat brain, neither isoniazid (INH) nor four of its known metabolites (isonicotinic acid, acetylisoniazid, acetylhydrazine, diacetylhydrazine) inhibited the enzyme in concentrations (5 mM) far higher than those likely to be achieved when INH is administered to man. In contrast, hydrazine (5 μM) caused a 50% inhibition of GABA-T without inhibiting glutamic acid decarboxylase (GAD). Rats were injected daily for 109 days with hydrazine (0.08 or 0.16 mmol/kg/day), after which amino acid contents and enzyme activities were measured in their brains. Both hydrazine doses caused significant elevations of whole brain GABA content and reductions of GABA-T activity, but did not affect GAD activity. Chronic administration of hydrazine at thee doses did not reduce weight gain or alter rat behavior, nor did it produce any irreversible pathologic changes in liver or alterations in hepatic aryl hydrocarbon hydroxylase activity. However, hydrazine treatment caused changes in the contents of many brain amino acids besides GABA, and markedly increased concentrations of ornithine, tyrosine, and α-aminoadipic acid in rat plasma. Inhibition of GABA-T activity and the other biochemical alterations observed in patients given high doses of INH probably result from hydrazine formed in the metabolic degradation of INH. Thus administration of hydrazine might be a more direct means of elevating brain GABA content in patients where this seems indicated, and might not entail a greater risk of adverse effects.  相似文献   

16.
Summary The localization of -aminobutyric acid (GABA) neurons in the goldfish and the rabbit retina has been studied by immunocytochemical localization of the GABA-synthesizing enzyme L-glutamate decarboxylase (GAD, L-glutamate 1-carboxy-lase, EC 4.1.1.15) and by [3H] GABA uptake autoradiography. In the goldfish retina, GAD is localized in some horizontal cells (H1 type), a few amacrine cells and sublamina b of the inner plexiform layer. Results from immunocytochemical studies of GAD-containing neurons and autoradiographic studies of GABA uptake reveals a marked similarity in the labeling pattern suggesting that in goldfish retina, the neurons which possess a high-affinity system for GABA uptake also contain significant levels of GAD. In the rabbit retina, when Triton X-100 was included in immunocytochemical incubations with a modified protein A-peroxidase-antiperoxidase method, reaction product was found in four broad, evenly spaced laminae within the inner plexiform layer. In the absence of the detergent, these laminae were seen to be composed of small, punctate deposits. When colchicine was injected intravitreally before glutamate decarboxylase staining, cell bodies with the characteristic shape and location of amacrine cells were found to be immunochemically labeled. Electron microscopic examination showed that these processes were presynaptic to ganglion cell dendrites (infrequently), amacrine cell telodendrons, and bipolar cell terminals. Often, bipolar cell terminals were found which were densely innervated by several GAD-positive processes. No definite synapses were observed in which a GAD-positive process represented the postsynaptic element. In autoradiographic studies by intravitreal injection of [3H] GABA a diffuse labeling of the inner plexiform layer and a dense labeling of certain amacrine cell bodies in the inner nuclear layer was observed. Both immunocytochemical and autoradiographic results support the notion that certain, if not all, amacrine cells use GABA as their neurotransmitter.  相似文献   

17.
Abstract: Stable isotopes were used to measure both the rate of GABA formation by glutamic acid decarboxylase (GAD) and the rate of utilization by GABA-transaminase (GABA-T). The initial rate of GABA accumulation, determined with either [2-15N]glutamine or [2H5]glutamine as precursor, was 0.3–0.4 nmol/min/mg of protein. Addition of the calcium ionophore A23187 enhanced GAD activity, whereas changes in levels of inorganic phosphate and H+ were without influence. Flux through GABA-T (GABA → glutamate), measured with [15N]GABA as precursor, was 0.82 nmol/min/mg of protein, whereas the reamination of succinic acid semialdehyde (reverse flux through GABA-T) was almost sixfold faster, 4.8 nmol/min/mg of protein. The rate of GABA metabolism via the tricarboxylic acid cycle was very slow, with the upper limit on flux being 0.03 nmol/min/mg of protein. Addition of either acetoacetate or β-hydroxybutyrate raised the internal content of glutamate and reduced that of aspartate; the GABA concentration and the rate of its formation increased. It is concluded that in synaptosomes (a) GABA-T is a primary factor in regulating the turnover of GABA, (b) a major regulator of GAD activity is the concentration of internal calcium, (c) GAD in nerve endings may not be saturated with its substrate, glutamate, and the concentration of the latter is a determinant of flux through this pathway, and (d) levels of ketone bodies increase, and maintain at a higher value, the synaptosomal content of GABA, a phenomenon that may contribute to the beneficial effect of a ketogenic diet in the treatment of epilepsy.  相似文献   

18.
Summary The aim of this study was to localize cells immunoreactive for glutamate decarboxylase (GAD), the enzyme of GABA synthesis, in pyloric and oxyntic regions of the rat stomach as well as in the rat and mouse pancreas. GAD immunocytochemistry was carried out on polyethylene glycol or cryostat sections of alkaline paraformaldehyde fixed tissue, with simultaneous immunolabelling of various gastro-pancreatic hormones for topographical comparison. In the rat stomach, nerve fibers displaying intense GAD-like immunoreactivity were seen in the myenteric plexus, the circular muscular layer, the submucosa and the lamina propria of the mucosa. But, they were absent from the submucous plexus. Colchicine treatment of the rats allowed to detect some labelled perikarya in the myenteric plexus suggesting that the GABAergic innervation is at least partly intrinsic to the stomach. In the oxyntic and pyloric mucosa, endocrine cells appeared immunostained for GAD. However, the nature of their hormones remained unknown since double immunodetections revealed that they were immunoreactive neither for gastrin nor for somatostatin. In the rat and mouse pancreas, GAD-like immunoreactivity was found in islet cells which corresponded only to insulin-secreting cells. Somatostatin-, glucagon- and pancreatic polypeptide-immunopositive cells were devoid of GAD immunolabelling. No GAD-like immunoreactivity was detected in the exocrine tissue and innervation. These results strenghten the hypothesis that GABA is not only a neurotransmitter in the stomach but that it could also be an endocrine or paracrine factor in the stomach and pancreas.  相似文献   

19.
The aim of this study was to localize cells immunoreactive for glutamate decarboxylase (GAD), the enzyme of GABA synthesis, in pyloric and oxyntic regions of the rat stomach as well as in the rat and mouse pancreas. GAD immunocytochemistry was carried out on polyethylene glycol or cryostat sections of alkaline paraformaldehyde fixed tissue, with simultaneous immunolabelling of various gastro-pancreatic hormones for topographical comparison. In the rat stomach, nerve fibers displaying intense GAD-like immunoreactivity were seen in the myenteric plexus, the circular muscular layer, the submucosa and the lamina propria of the mucosa. But, they were absent from the submucous plexus. Colchicine treatment of the rats allowed to detect some labelled perikarya in the myenteric plexus suggesting that the GABAergic innervation is at least partly intrinsic to the stomach. In the oxyntic and pyloric mucosa, endocrine cells appeared immunostained for GAD. However, the nature of their hormones remained unknown since double immunodetections revealed that they were immunoreactive neither for gastrin nor for somatostatin. In the rat and mouse pancreas, GAD-like immunoreactivity was found in islet cells which corresponded only to insulin-secreting cells. Somatostatin-, glucagon- and pancreatic polypeptide-immunopositive cells were devoid of GAD immunolabelling. No GAD-like immunoreactivity was detected in the exocrine tissue and innervation. These results strenghten the hypothesis that GABA is not only a neurotransmitter in the stomach but that it could also be an endocrine or paracrine factor in the stomach and pancreas.  相似文献   

20.
Gamma-aminobutyric acid (GABA) has several physiological functions in humans. We have reported that Lactobacillus paracasei NFRI 7415 produces high levels of GABA. To gain insight into the higher GABA-producing ability of this strain, we analyzed glutamate decarboxylase (GAD), which catalyzes the decarboxylation of L-glutamate to GABA. The molecular weight of the purified GAD was estimated to be 57 kDa by SDS-PAGE and 110 kDa by gel filtration, suggesting that GAD forms the dimer under native conditions. GAD activity was optimal at pH 5.0 at 50 degrees C. The Km value for the catalysis of glutamate was 5.0 mM, and the maximum rate of catalysis was 7.5 micromol min(-1) mg(-1). The N-terminal amino acid sequence of GAD was determined, and the gene encoding GAD from genomic DNA was cloned. The findings suggest that the ability of Lb. paracasei to produce high levels of GABA results from two characteristics of GAD, viz., a low Km value and activity at low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号