首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four approximately 75-residue domains (repeats) that constitute the annexin core structure all possess an identical five-alpha-helix bundle topology, but the physico-chemical properties of the isolated domains are different. Domain IV of the annexins has previously been expressed only as inclusion bodies, resistant to solubilisation. Analysis of the conserved, exposed hydrophobic residues of the four annexin domains reveals that domain IV contains the largest number of hydrophobic residues involved in interfacial contacts with the other domains. We designed five constructs of domain IV of annexin A2 in which several interfacial hydrophobic residues were substituted by hydrophilic residues. The mutant domain, in which all fully exposed hydrophobic interfacial residues were substituted, was isolated as a soluble protein. Circular dichroism measurements indicate that it harbours a high content of alpha-helical secondary structure and some tertiary structure. The CD-monitored (lambda=222 nm) thermal melting profile suggests a weak cooperative transition. Nuclear magnetic resonance (1H-15N) correlation spectroscopy reveals heterogeneous line broadening and an intermediate spectral dispersion. These properties are indicative of a partially folded protein in which some residues are in a fairly structured conformation, whereas others are in an unfolded state. This conclusion is corroborated by 1-anilinonaphthalene-8-sulfonate fluorescence (ANS) analyses. Surface plasmon resonance measurements also indicate that this domain binds heparin, a known ligand of domain IV in the full-length annexin A2, although with lower affinity.  相似文献   

2.
There is controversy over whether Ca(2+) binds to the BK(Ca) channel's intracellular domain or its integral-membrane domain and over whether or not mutations that reduce the channel's Ca(2+) sensitivity act at the point of Ca(2+) coordination. One region in the intracellular domain that has been implicated in Ca(2+) sensing is the "Ca(2+) bowl". This region contains many acidic residues, and large Ca(2+)-bowl mutations eliminate Ca(2+) sensing through what appears to be one type of high-affinity Ca(2+)-binding site. Here, through site-directed mutagenesis we have mapped the residues in the Ca(2+) bowl that are most important for Ca(2+) sensing. We find acidic residues, D898 and D900, to be essential, and we find them essential as well for Ca(2+) binding to a fusion protein that contains a portion of the BK(Ca) channel's intracellular domain. Thus, much of our data supports the conclusion that Ca(2+) binds to the BK(Ca) channel's intracellular domain, and they define the Ca(2+) bowl's essential Ca(2+)-sensing motif. Overall, however, we have found that the relationship between mutations that disrupt Ca(2+) sensing and those that disrupt Ca(2+) binding is not as strong as we had expected, a result that raises the possibility that, when examined by gel-overlay, the Ca(2+) bowl may be in a nonnative conformation.  相似文献   

3.
Annexin A2 (AnxA2) interacts with numerous ligands, including calcium, lipids, mRNAs and intracellular and extracellular proteins. Different post-translational modifications participate in the discrimination of the functions of AnxA2 by modulating its ligand interactions. Here, phospho-mimicking mutants (AnxA2-S25E and AnxA2-S25D) were employed to investigate the effects of Ser25 phosphorylation on the structure and function of AnxA2 by using AnxA2-S25A as a control. The overall α-helical structure of AnxA2 is not affected by the mutations, since the thermal stabilities and aggregation tendencies of the mutants differ only slightly from the wild-type (wt) protein. Unlike wt AnxA2, all mutants bind the anxA2 3′ untranslated region and β-γ-G-actin with high affinity in a Ca2 +-independent manner. AnxA2-S25E is not targeted to the nucleus in transfected PC12 cells. In vitro phosphorylation of AnxA2 by protein kinase C increases its affinity to mRNA and inhibits its nuclear localisation, in accordance with the data obtained with the phospho-mimicking mutants. Ca2 +-dependent binding of wt AnxA2 to phosphatidylinositol, phosphatidylinositol-3-phosphate, phosphatidylinositol-4-phosphate and phosphatidylinositol-5-phosphate, as well as weaker but still Ca2 +-dependent binding to phosphatidylserine and phosphatidylinositol-3,5-bisphosphate, was demonstrated by a protein–lipid overlay assay, whereas binding of AnxA2 to these lipids, as well as its binding to liposomes, is inhibited by the Ser25 mutations. Thus, introduction of a modification (mutation or phosphorylation) at Ser25 appears to induce a conformational change leading to increased accessibility of the mRNA- and G-actin-binding sites in domain IV independent of Ca2 + levels, while the Ca2 +-dependent binding of AnxA2 to phospholipids is attenuated.  相似文献   

4.
Annexin A2 (AnxA2) is a Ca2+- and phospholipid-binding protein involved in many cellular regulatory processes. Like other annexins, it is constituted by two domains: a conserved core, containing the Ca2+ binding sites, and a variable N-terminal segment, containing sites for interactions with other protein partners like S100A10 (p11). A wealth of data exists on the structure and dynamics of the core, but little is known about the N-terminal domain especially in the Ca2+-induced membrane-bridging process. To investigate this protein region in the monomeric AnxA2 and in the heterotetramer (AnxA2-p11)2, the reactive Cys8 residue was specifically labelled with the fluorescent probe acrylodan and the interactions with membranes were studied by steady-state and time-resolved fluorescence. In membrane junctions formed by the (AnxA2-p11)2 heterotetramer, the flexibility of the N-terminal domain increased as compared to the protein in solution. In “homotypic” membrane junctions formed by monomeric AnxA2, acrylodan moved to a more hydrophobic environment than in the protein in solution and the flexibility of the N-terminal domain also increased. In these junctions, this domain is probably not in close contact with the membrane surface, as suggested by the weak quenching of acrylodan observed with doxyl-PCs, but pairs of N-termini likely interact, as revealed by the excimer-forming probe pyrene-maleimide bound to Cys8. We present a model of monomeric AnxA2 N-terminal domain organization in “homotypic” bridged membranes in the presence of Ca2+.  相似文献   

5.
We postulate the existence of a pH-sensitive domain in annexin A6 (AnxA6), on the basis of our observation of pH-dependent conformational and orientation changes of this protein and its N- (AnxA6a) and C-terminal (AnxA6b) halves in the presence of lipids. Brewster angle microscopy shows that AnxA6, AnxA6a, and AnxA6b in the absence of lipids accumulate at the air-water interface and form a stable, homogeneous layer at pH below 6.0. Under these conditions polarization modulation IR absorption spectroscopy reveals significant conformational changes of AnxA6a whereas AnxA6b preserves its alpha-helical structure. The orientation of protein alpha-helices is parallel with respect to the interface. In the presence of lipids, polarization modulation IR reflection absorption spectroscopy experiments suggest that AnxA6a incorporates into the lipid/air interface, whereas AnxA6b is adsorbed under the lipid monolayer. In this case AnxA6a regains its alpha-helical structures. At a higher pressure of the lipid monolayer the average orientation of the alpha-helices of AnxA6a changes from flat to tilted by 45 degrees with respect to normal to the membrane interface. For AnxA6b no such changes are detected, even at a high pressure of the lipid monolayer-suggesting that the putative pH-sensitive domain of AnxA6 is localized in the N-terminal half of the protein.  相似文献   

6.
Annexin A6 (AnxA6), calcium- and membrane-binding protein, is involved in membrane dynamics. It exists in the cell in two isoforms, AnxA6-1 and AnxA6-2, varying only by the VAAEIL sequence. In most cells, AnxA6-1 predominates. A limited number of observations suggests that both isoforms differ from each other functionally. The EGF-dependent Ca(2+) influx in A431 cells is inhibited only by AnxA6-1. Moreover, AnxA6-2 was found to exhibit higher affinity for Ca(2+). In this report we addressed the potential significance of the VAAEIL deletion in AnxA6-2. For this purpose, we expressed AnxA6 isoform cDNAs in bacteria or mouse Balb/3T3 fibroblasts. The recombinant AnxA6-2 was characterized by a less extended molecular shape than that of AnxA6-1 and required a narrower [Ca(2+)] range to bind liposomes. Upon lowering pH in the presence of EGTA recombinant AnxA6-2 became less hydrophobic than AnxA6-1 as revealed by the Triton X-114 partition. Furthermore, AnxA6-2 revealed stronger F-actin binding than that of AnxA6-1. Immunofluorescence microscopy showed that the EGFP-tagged AnxA6 isoforms expressed in Balb/3T3 fibroblasts relocate in a Ca(2+)- and H(+)-sensitive manner to the vesicular structures in a perinuclear region or in cytosol. Cell fractionation showed that in resting conditions AnxA6-1 is associated with early endosomes and AnxA6-2 with late endosomes, and an increase in [Ca(2+)] and/or [H(+)] induced their opposite distribution. These findings suggest a potentially independent regulation, localization, and function of AnxA6 isoforms in Balb/3T3 fibroblasts. More generally, our findings suggest distinct functions of AnxA6 isoforms in membrane dynamics.  相似文献   

7.
Calcyclin is a homodimeric protein belonging to the S100 subfamily of EF-hand Ca(2+)-binding proteins, which function in Ca(2+) signal transduction processes. A refined high-resolution solution structure of Ca(2+)-bound rabbit calcyclin has been determined by heteronuclear solution NMR. In order to understand the Ca(2+)-induced structural changes in S100 proteins, in-depth comparative structural analyses were used to compare the apo and Ca(2+)-bound states of calcyclin, the closely related S100B, and the prototypical Ca(2+)-sensor protein calmodulin. Upon Ca(2+) binding, the position and orientation of helix III in the second EF-hand is altered, whereas the rest of the protein, including the dimer interface, remains virtually unchanged. This Ca(2+)-induced structural change is much less drastic than the "opening" of the globular EF-hand domains that occurs in classical Ca(2+) sensors, such as calmodulin. Using homology models of calcyclin based on S100B, a binding site in calcyclin has been proposed for the N-terminal domain of annexin XI and the C-terminal domain of the neuronal calcyclin-binding protein. The structural basis for the specificity of S100 proteins is discussed in terms of the variation in sequence of critical contact residues in the common S100 target-binding site.  相似文献   

8.
Henzl MT  Tanner JJ  Tan A 《Proteins》2011,79(3):752-764
Birds express two β-parvalbumin isoforms, parvalbumin 3 and avian thymic hormone (ATH). Parvalbumin 3 from chicken (CPV3) is identical to rat β-parvalbumin (β-PV) at 75 of 108 residues. CPV3 displays intermediate Ca(2+) affinity--higher than that of rat β-parvalbumin, but lower than that of ATH. As in rat β-PV, the attenuation of affinity is associated primarily with the CD site (residues 41-70), rather than the EF site (residues 80-108). Structural data for rat α- and β-parvalbumins suggest that divalent ion affinity is correlated with the similarity of the unliganded and Ca(2+)-bound conformations. We herein present a comparison of the solution structures of Ca(2+)-free and Ca(2+)-bound CPV3. Although the structures are generally similar, the conformations of residues 47 to 50 differ markedly in the two protein forms. These residues are located in the C helix, proximal to the CD binding loop. In response to Ca(2+) removal, F47 experiences much greater solvent accessibility. The side-chain of R48 assumes a position between the C and D helices, adjacent to R69. Significantly, I49 adopts an interior position in the unliganded protein that allows association with the side-chain of L50. Concomitantly, the realignment of F66 and F70 facilitates their interaction with I49 and reduces their contact with residues in the N-terminal AB domain. This reorganization of the hydrophobic core, although less profound, is nevertheless reminiscent of that observed in rat β-PV. The results lend further support to the idea that Ca(2+) affinity correlates with the structural similarity of the apo- and bound parvalbumin conformations.  相似文献   

9.
10.
LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca(2+). Recent crystal structures have been obtained for the protein in the apo- and Ca(2+)-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca(2+) and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca(2+) binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca(2+) affinity as the wild-type protein. We then evaluated if Ca(2+) binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca(2+) ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.  相似文献   

11.
Mutants of the plasma membrane Ca(2+) pump (human isoform 4xb) with deletions in the linker between domain A and transmembrane segment M3 (A(L) region) were constructed and expressed in Chinese hamster ovary cells. The total or partial removal of the amino acid segment 300-349 did not change the maximal Ca(2+) transport activity, but mutants with deletions involving residues 300-338 exhibited a higher apparent affinity for Ca(2+) than the wild type h4xb enzyme. Deletion of the putative acidic lipid interacting sequence (residues 339-349) had no observable functional consequences. The removal of either residues 300-314 or 313-338 resulted in a similar increase in the apparent Ca(2+) affinity of the pump although the increase was somewhat lower than that obtained by the deletion 300-349 suggesting that both deletions affected the same structural determinant. The results show that alterations in the region of the alternative splicing site A change the sensitivity to Ca(2+) of the human isoform 4 of the PMCA.  相似文献   

12.
The determinants for specificity in the Ca(2+)-dependent response of the regulatory N-terminal domain of skeletal troponin-C are a combination of intrinsic and induced properties. We characterized computationally the intrinsic propensity of this domain for structural changes similar to those observed experimentally in the Ca(2+)-induced transition. The preference for such changes was assessed by comparing the structural effect of the harmonic and quasiharmonic vibrations specific for each Ca(2+) occupancy with crystallographic data. Results show that only the Ca(2+)-saturated form of the protein features a slow vibrational motion preparatory for the transition. From the characteristics of this mode, we identified a molecular mechanism for transition, by which residues 42-51 of helix B and of the adjacent linker move toward helices (A, D), and bind to the surface used by the protein to interact with troponin-I. By obstructing the access of the target to hydrophobic residues important in the formation of the complex, helix B and the adjacent linker act as an autoinhibitory structural element. Specific properties of the methionines at the interaction surface were found to favor the binding of the autoinhibitory region. Located over hydrophobic residues critical for binding, the methionines are easily displaceable to increase the accessibility of these residues to molecular encounter.  相似文献   

13.
14.
Annexin A5 (AnxA5) is a member of a family of homologous proteins sharing the ability to bind to negatively charged phospholipid membranes in a Ca2+-dependent manner. In this paper, we used polarization-modulated infrared reflection absorption spectroscopy (PMIRRAS), Brewster angle microscopy (BAM), and ellipsometry to investigate changes both in the structure of AnxA5 and phospholipid head groups associated with membrane binding. We found that the secondary structure of AnxA5 in the AnxA5/Ca2+/lipid ternary complex is conserved, mainly in α-helices and the average orientation of the α-helices of the protein is slightly tilted with respect to the normal to the phospholipid monolayer. Upon interaction between AnxA5 and phospholipids, a shift of the νas PO2 band is observed by PMIRRAS. This reveals that the phosphate group is the main group involved in the binding of AnxA5 to phospholipids via Ca2+ ions, even when some carboxylate groups are accessible (PS). PMIRRAS spectra also indicate a change of carboxylate orientation in the aspartate and glutamate residues implicated in the association of the AnxA5, which could be linked to the 2D crystallization of protein under the phospholipid monolayer. Finally, we demonstrated that the interaction of AnxA5 with pure carboxylate groups of an oleic acid monolayer is possible, but the orientation of the protein under the lipid is completely different.  相似文献   

15.
Human APOBEC3G (A3G) belongs to a family of polynucleotide cytidine deaminases. This family includes APOBEC1 and AID, which edit APOB mRNA and antibody gene DNA, respectively. A3G deaminates cytidines to uridines in single-strand DNA and inhibits the replication of human immunodeficiency virus-1, other retroviruses, and retrotransposons. Although the mechanism of A3G-catalyzed DNA deamination has been investigated genetically and biochemically, atomic details are just starting to emerge. Here, we compare the DNA cytidine deaminase activities and NMR structures of two A3G catalytic domain constructs. The longer A3G191-384 protein is considerably more active than the shorter A3G198-384 variant. The longer structure has an α1-helix (residues 201-206) that was not apparent in the shorter protein, and it contributes to catalytic activity through interactions with hydrophobic core structures (β1, β3, α5, and α6). Both A3G catalytic domain solution structures have a discontinuous β2 region that is clearly different from the continuous β2 strand of another family member, APOBEC2. In addition, the longer A3G191-384 structure revealed part of the N-terminal pseudo-catalytic domain, including the interdomain linker and some of the last α-helix. These structured residues (residues 191-196) enabled a novel full-length A3G model by providing physical overlap between the N-terminal pseudo-catalytic domain and the new C-terminal catalytic domain structure. Contrary to predictions, this structurally constrained model suggested that the two domains are tethered by structured residues and that the N- and C-terminal β2 regions are too distant from each other to participate in this interaction.  相似文献   

16.
Annexin A2 (AnxA2) is a Ca(2+)- and acidic phospholipid-binding protein involved in many cellular processes. It undergoes Ca(2+)-mediated membrane bridging at neutral pH and has been demonstrated to be involved in an H(+)-mediated mechanism leading to a novel AnxA2-membrane complex structure. We used fluorescence techniques to characterize this H(+)-dependent mechanism at the molecular level; in particular, the involvement of the AnxA2 N-terminal domain. This domain was labeled at Cys-8 either with acrylodan or pyrene-maleimide fluorescent probes. Steady-state and time-resolved fluorescence analysis for acrylodan and fluorescence quenching by doxyl-labeled phospholipids revealed direct interaction between the N-terminal domain and the membrane. The absence of pyrene excimer suggested that interactions between N termini are not involved in the H(+)-mediated mechanism. These findings differ from those previously observed for the Ca(2+)-mediated mechanism. Protein titration experiments showed that the protein concentration for half-maximal membrane aggregation was twice for Ca(2+)-mediated compared with H(+)-mediated aggregation, suggesting that AnxA2 was able to bridge membranes either as a dimer or as a monomer, respectively. An N-terminally deleted AnxA2 was 2-3 times less efficient than the wild-type protein for H(+)-mediated membrane aggregation. We propose a model of AnxA2-membrane assemblies, highlighting the different roles of the N-terminal domain in the H(+)- and Ca(2+)-mediated membrane bridging mechanisms.  相似文献   

17.
Benz(othi)azepine (BTZ) derivatives constitute one of three major classes of L-type Ca(2+) channel ligands. Despite intensive experimental studies, no three-dimensional model of BTZ binding is available. Here we have built KvAP- and KcsA-based models of the Ca(v)1.2 pore domain in the open and closed states and used multiple Monte Carlo minimizations to dock representative ligands. In our open channel model, key functional groups of BTZs interact with BTZ-sensing residues, which were identified in previous mutational experiments. The bulky tricyclic moiety occupies interface between domains III and IV, while the ammonium group protrudes into the inner pore, where it is stabilized by nucleophilic C-ends of the pore helices. In the closed channel model, contacts with several ligand-sensing residues in the inner helices are lost, which weakens ligand-channel interactions. An important feature of the ligand-binding mode in both open and closed channels is an interaction between the BTZ carbonyl group and a Ca(2+) ion chelated by the selectivity filter glutamates in domains III and IV. In the absence of Ca(2+), the tricyclic BTZ moiety remains in the domain interface, while the ammonium group directly interacts with a glutamate residue in the selectivity filter. Our model suggests that the Ca(2+) potentiation involves a direct electrostatic interaction between aCa(2+) ion and the ligand rather than an allosteric mechanism. Energy profiles indicate that BTZs can reach the binding site from the domain interface, whereas access through the open activation gate is unlikely, because reorientation of the bulky molecule in the pore is hindered.  相似文献   

18.
19.
Synaptotagmin I has two tandem Ca(2+)-binding C(2) domains, which are essential for fast synchronous synaptic transmission in the central nervous system. We have solved four crystal structures of the C(2)B domain, one of them in the cation-free form at 1.50 A resolution, two in the Ca(2+)-bound form at 1.04 A (two bound Ca(2+) ions) and 1.65 A (three bound Ca(2+) ions) resolution and one in the Sr(2+)-bound form at 1.18 A (one bound Sr(2+) ion) resolution. The side chains of four highly conserved aspartic acids (D303, D309, D363, and D365) and two main chain oxygens (M302:O and Y364:O), together with water molecules, are in direct contact with two bound Ca(2+) ions (sites 1 and 2). At higher Ca(2+) concentrations, the side chain of N333 rotates and cooperates with D309 to generate a third Ca(2+) coordination site (site 3). Divalent cation binding sites 1 and 2 in the C(2)B domain were previously identified from NMR NOE patterns and titration studies, supplemented by site-directed mutation analysis. One difference between the crystal and NMR studies involves D371, which is not involved in coordination with any of the identified Ca(2+) sites in the crystal structures, while it is coordinated to Ca(2+) in site 2 in the NMR structure. In the presence of Sr(2+), which is also capable of triggering exocytosis, but with lower efficiency, only one cation binding site (site 1) was occupied in the crystallographic structure.  相似文献   

20.
Annexin A2 (AnxA2) is a Ca(2+)- and phospholipid-binding protein involved in many cellular regulatory processes. Like other annexins, it is constituted by two domains: a conserved core, containing the Ca(2+) binding sites, and a variable N-terminal segment, containing sites for interactions with other protein partners like S100A10 (p11). A wealth of data exists on the structure and dynamics of the core, but little is known about the N-terminal domain especially in the Ca(2+)-induced membrane-bridging process. To investigate this protein region in the monomeric AnxA2 and in the heterotetramer (AnxA2-p11)(2), the reactive Cys8 residue was specifically labelled with the fluorescent probe acrylodan and the interactions with membranes were studied by steady-state and time-resolved fluorescence. In membrane junctions formed by the (AnxA2-p11)(2) heterotetramer, the flexibility of the N-terminal domain increased as compared to the protein in solution. In "homotypic" membrane junctions formed by monomeric AnxA2, acrylodan moved to a more hydrophobic environment than in the protein in solution and the flexibility of the N-terminal domain also increased. In these junctions, this domain is probably not in close contact with the membrane surface, as suggested by the weak quenching of acrylodan observed with doxyl-PCs, but pairs of N-termini likely interact, as revealed by the excimer-forming probe pyrene-maleimide bound to Cys8. We present a model of monomeric AnxA2 N-terminal domain organization in "homotypic" bridged membranes in the presence of Ca(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号