首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 839 毫秒
1.
When rabbit muscle phosphorylase reconstituted with pyridoxal (5')-diphospho(1)-alpha-D-glucose is incubated with glycogen, its glucosyl moiety is transferred to the nonreducing end of glycogen with the formation of a new alpha-1,4-glucosidic linkage. This finding provided the first evidence for the direct phosphate-phosphate interaction between the coenzyme pyridoxal 5'-phosphate and the substrate alpha-D-glucose 1-phosphate in the phosphorylase catalytic reaction (Takagi, M., Fukui, T., and Shimomura, S. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 3716-3719). We have examined whether pyridoxal(5')triphospho(1)-alpha-D-glucose can act in a similar manner to the diphospho compound or not. In the absence of glucan the enzyme-bound triphospho compound was stable for 1 day at pH 6-9. In the presence of glucan, however, its glucosidic linkage was cleaved, and the glucosyl moiety liberated was transferred to glycogen with the formation of a new alpha-1,4-glucosidic linkage. Allosteric activator AMP accelerated the reaction and allosteric inhibitor glucose 6-phosphate showed the reverse effect. The pH optimum of the reaction was pH 8.1-8.4. Mg2+ slightly but significantly accelerated the reaction, whereas Mn2+ and Ca2+ inhibited the reaction. These results indicate that the glucosyltransfer from the triphospho compound occurs in an identical manner to that from the diphospho compound. Based on the present and previous data, we discuss the catalytic mechanism of phosphorylase, especially in comparison with that of phosphoryltransferases.  相似文献   

2.
Pyridoxal 5′-phosphate, the vitamin B6 derivative, acts as the coenzyme of many enzymes involved in amino acid metabolism. Exceptionally, this compound was found covalently bound to glycogen phosphorylase, the key enzyme in the regulation of glycogen metabolism. Although it is essential for the function of phosphorylase, its direct role has remained an enigma. We have recently found that the glucose moiety of pyridoxal (5′)diphospho (1)-α-D -glucose, a conjugate of pyridoxal 5′-phosphate and glucose 1-phosphate through a pyrophosphate linkage, is transferred to the nonreducing end of glycogen, forming a new α-1,4-glucosidic linkage. This finding emphasizes the importance of the direct phosphate-phosphate interaction between the coenzyme and the substrate in the phosphorylase catalytic reaction. We have proposed a catalytic mechanism for phosphorylase in which the phosphate group of pyridoxal 5′-phosphate acts as an electrophile to the phosphate group of glucose 1-phosphate. This appears to represent the first instance of the direct involvement of a phosphate group in catalysis by enzymes.  相似文献   

3.
The carboxylation of the pentapeptide substrate, Phe-Leu-Glu-Glu-Ile, by a rat microsomal vitamin K-dependent carboxylase was stimulated two- to threefold at pyridoxal-5′-P concentrations between 0.5 and 1.0 mm. This stimulation was reduced at concentrations higher than 1.0 mm. The Km for the pentapeptide was lowered twofold in the presence of 1 mm pyridoxal-5′-P. The activation by pyridoxal-5′-P is specific, as 1 mm pyridoxal, pyridoxine, pyridoxine-5′-P, pyridoxamine, pyridoxamine-5′-P, or 4-pyridoxic acid did not stimulate the pentapeptide carboxylation rate. All six analogs, as well as formaldehyde and acetaldehyde, inhibited the carboxylation reaction in a concentration-dependent manner. The activation of the carboxylase by pyridoxal-5′-P appeared to be mediated by its direct binding to the enzyme via Schiff base formation. Sodium borohydride reduction of solubilized microsomes in the presence of pyridoxal-5′-P, followed by dialysis to remove unbound material, resulted in a carboxylase preparation with a specific activity twice that of the untreated control microsomes. The derivatized enzyme was not further stimulated by added pyridoxal-5′-P. This derivatized carboxylase could be obtained in the absence of pentapeptide and divalent cations. The stimulation of the carboxylase activity by divalent cations and pyridoxal-5′-P was mediated at separate site(s) on the enzyme. Studies of the NH2-terminal pyridoxalated pentapeptide with both a normal and PLP-modified enzyme, in the presence and absence of PLP, demonstrated competition of the pentapeptide PLP moiety to a PLP site on the enzyme. It was concluded that pyridoxal-5′-P forms a covalent attachment to an ?-NH2 of a lysine near the active site of the carboxylase.  相似文献   

4.
A homogeneous glutamate decarboxylase isolated from pig brain contains 0.8 mol of tightly bound pyridoxal 5-phosphate/enzyme dimer. Upon addition of exogenous pyridoxal 5-phosphate (pyridoxal-5-P), the enzyme acquires maximum catalytic activity. Preincubation of the enzyme with L-glutamate (10 mM) brings about changes in the absorption spectrum of bound pyridoxal-5-P with the concomitant formation of succinic semialdehyde. However, the rate of this slow secondary reaction, i.e. decarboxylative transamination, is 10(-4) times the rate of normal decarboxylation. It is postulated that under physiological conditions enzymatically inactive species of glutamate decarboxylase, generated by the process of decarboxylative transamination, are reconstituted by pyridoxal-5-P produced by the cytosolic enzymes pyridoxal kinase and pyridoxine-5-P oxidase. The catalytic activity of resolved glutamate decarboxylase is recovered by preincubation with phospho-pyridoxyl-ethanolamine phosphate. The experimental evidence is consistent with the interpretation that the resolved enzyme binds the P-pyridoxyl analog, reduces the stability of the covalent bond of the phospho-pyridoxyl moiety, and catalyzes the formation of pyridoxal-5-P.  相似文献   

5.
When D-glucosaminate dehydratase (GADH) was incubated with D-glucosaminate (GlcNA) in veronal buffer (VB; 0.01 M, pH 8.0), GlcNA was converted stoichiometrically to glyceraldehyde, pyruvate, and ammonia (aldolase reaction A). This reaction occurred in addition to the dehydratase reaction (conversion of GlcNA to 2-keto-3-deoxy-o-gluconate and ammonia: α-elimination reaction, B). The ratio of the activities (A:B) was about 1:4. However, in potassium phosphate buffer (KPB; 0.04 M, pH 8.0), the aldolase reaction was inhibited to 3–4% of that in VB, and also inhibited by various derivatives of glycerol, in particular, glycerol-3-phosphate (glycerol-3-P) and glyceraldehyde-3-phosphate (glyceraldehyde-3-P) in VB. The native enzyme was inhibited by incubation with 0.1 M EDTA, and the activity was restored by incubation of the EDTA-treated enzyme with (Mn2+ + pyridoxal 5′-phosphate (PLP)). When the EDTA-treated enzyme was incubated with (Mn2+ + PLP + glycerol-3-P), the activity of reaction B increased to 131% but that of reaction A decreased to 21%. These results suggested that Mn2+, PLP, and the phosphate group of glycerol-3-P are involved in formation of the active enzyme. In the case of the aldolase reaction, Mn2+ ion, which might be essential for the reaction, is chelated by the phosphate group of glycerol-3-P with resultant inhibition of the aldolase reaction.  相似文献   

6.
W Saenger  D Suck  M Knappenberg  J Dirkx 《Biopolymers》1979,18(8):2015-2036
The cytostatic drug 6-azauridine is converted in vivo to 6-azauridine-5′-phosphate (z6Urd-5′-P), which blocks the enzyme orotidine-5′-phosphate decarboxylase (Ord-5′-Pdecase) and therefore inhibits the de novo production of uridine-5′-phosphate (Urd-5′-P). In order to relate the structure and function of z6Urd-5′-P, it was crystallized as trihydrate, space group P212121 with a = 20.615 Å, b = 6.265 Å, c = 11.881 Å, and the structure established by Patterson methods. Atomic parameters were refined by full-matrix least-squares methods to R = 0.066 using 1638 counter measured x-ray data. The ribose of z6Urd-5′-P is in a twisted C(2′)-exo, C(3′)endo conformation, the heterocycle is in extreme anti position with angle N(6)-N(1)-C(1′)-O(4′) at 86.3°, and the orientation about the C(4′)-C(5′) bond is gauche, trans in contrast to gauche, gauche found for all the other 5′-ribonucleotides. Conformational energy calculations show that z6Urd-5′-P may adopt an extreme anti conformation not allowed to Urd-5′-P, and they also predict the same unusual trans, gauche conformation about the C(4′)-C(5′) bond in orotidine-5′-phosphate (Ord-5′-P) and in z6Urd-5′-P, which renders the distances O(2)…O(5′) in z6Urd-5′-P and O(7)…O(5′) in Ord-5′-P comparable. On this basis the function of z6Urd-5′-P as an Ord-5′-Pdecase inhibitor can be explained as being due to its structural similarity with the substrate Ord-5′-P and further clarifies the inhibitory action of 5′-nucleotides bearing the heterocycles oxipurinol, xanthine, or allopurinol [J. A. Fyfe, R. L. Miller, and T. A. Krenitsky, J. Biol. Chem. 248 , 3801 (1973)]. With this in mind, new inhibitors for Ord-5′-Pdecase may be designed.  相似文献   

7.
Rabbit muscle glycogen phosphorylase (EC 2.4.1.1) was reconstituted with pyridoxal 5′-methylenephosphonate with ca. 25% restoration of enzymatic activity. The modified enzyme has very similar chemical and physical properties to native phosphorylase including UV and fluorescence spectra, quaternary structure, high energy of activation in the reconstitution reaction, optimum pH and susceptibility to phosphorylase kinase in the b to a conversion. While Vmax is reduced to ca. one-fifth, affinities for the substrate glucose 1-P and the effector AMP are increased. This is the first analog of pyridoxal 5′-P modified in the 5′-position found to restore catalytic activity to apophosphorylase.  相似文献   

8.
A vinyl phosphonate analog of adenosine 5′-phosphate (AMP) was synthesized in which the CH2OP system of AMP is replaced by CHCHP. The Vmax values of this analog relative to AMP were 0.7% with rabbit muscle AMP aminohydrolase, 13.4% with rabbit muscle AMP kinase, and 6.6% with pig muscle AMP kinase. The vinyl analog of ADP produced by the kinases was a substrate of rabbit muscle pyruvate kinase. These results, together with substrate specificity properties at the AMP sites of the enzymes indicate that the C(4′)-C(5′)-O(5′)-P system of AMP is of trans character during conversion of AMP to ADP by pig or rabbit AMP kinase.  相似文献   

9.
Effects of pyridoxal 5′-phosphate on the activity of crude and purified acetylcholinesterase from cerebral hemispheres of adult rat brain were examined. Acetylcholinesterase was completely inactivated by incubation with 0.5 mM pyridoxal 5′-phosphate. The enzyme activity remained unaltered in the presence of analogs of pyridoxal 5′-phosphate, pyridoxal, pyridoxamine and pyridoxamine 5′-phosphate. The inhibition of acetylcholinesterase activity by pyridoxal 5′-phosphate appeared to be of a noncompetitive nature, as determined by Lineweaver-Burk analysis. The inhibitory effect of pyridoxal 5′-phosphate on acetylcholinesterase appeared to be a general one, as the activity of the enzyme from the brains of immature chick and egg-laying hen, and from different tissues of the adult male rats, exhibited a similar pattern in the presence of the inhibitor. The inhibitory effects of pyridoxal 5′-phosphate could be reversed upon exhaustive dialysis of the pyridoxan 5′-phosphate-treated acetylcholinesterase preparations. We propose that the effects of pyridoxal 5′-phosphate are due to its interaction with acetylcholinesterase, and that it can be employed as a useful tool for studying biochemical aspects of this important brain enzyme.  相似文献   

10.
Y C Chang  T McCalmont  D J Graves 《Biochemistry》1983,22(21):4987-4993
Pyridoxal-reconstituted phosphorylase was used as a model system to study the possible functions of the 5'-phosphoryl group of pyridoxal 5'-phosphate (PLP) in rabbit muscle glycogen phosphorylase. Kinetic study was conducted by using competitive inhibitors of phosphite, an activator, and alpha-D-glucopyranose 1-phosphate (glucose-1-P) to study the relationship between the PLP phosphate and the binding of glucose-1-P to phosphorylase. Fluorine-19 nuclear magnetic resonance (19F NMR) spectroscopy of fluorophosphate bound to pyridoxal phosphorylase showed that its ionization state did not change during enzymatic catalysis. Evaluation of the apparent kinetic parameters for the activation of pyridoxal phosphorylase with different analogues having varied pKa2 values demonstrated a dependency of KM on pKa2. Molybdate, capable of binding as chelates in a trigonal-bipyramidal configuration, was tested for its inhibitory property with pyridoxal phosphorylase. On the basis of the results in this study, several conclusions may be drawn: (1) The bound phosphite in pyridoxal phosphorylase and, possibly, the 5'-phosphoryl group of PLP in native phosphorylase do not effect the glucose-1-P binding. (2) One likely function of the 5'-phosphoryl group of PLP in native phosphorylase is acting as an anchoring point to hold the PLP molecule and/or various amino acid side chains in a proper orientation for effective catalysis. (3) The force between the PLP phosphate and its binding site in phosphorylase is mainly electrostatic; a change of ionization state during catalysis is unlikely. (4) Properties of the central atoms of different anions are important for their effects as either activators or inhibitors of pyridoxal phosphorylase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Both of the starch phosphorylase fractions from Victory Freezer pea seeds, that can be separated by DEAE—cellulose chromatography and purified by Sepharose 4B-starch affinity chromatography, contain pyridoxal 5′-phosphate. The addition of further quantities of pyridoxal 5′-phosphate causes inactivation. Both enzymes showed similar bi-substrate kinetics with d-Glc-1-P and varying amounts of amylopectin and also with Pi and varying amounts of amylopectin. In the direction of glucan sythesis the Km for amylopectin with phosphorylase II was much higher than with phosphorylase I. However, the two enzymes differed in their behaviour on glucan degradation at varying concentrations of Pi. With phosphorylase II the Km for amylopectin was dependent on the concentration of Pi but that for phosphorylase I was constant. Phosphorylase II was strongly inhibited by ADPG in the direction of glucan degradation but only slightly in the direction of glucan synthesis by both ADPG and UDPG. Phosphorylase I was only slightly inhibited by ADPG in both directions and by UDPG in synthesis. UDPG inhibited both enzymes moderately in glucan degradation,  相似文献   

12.
A new fluorometric method using semicarbazide for the determination of pyridoxal and pyridoxal 5′-phosphate (PLP) in whole blood, red cells and plasma has been developed. Semicarbazide breaks the Schiff base of PLP and proteins by “trans-Schiffization” reaction and forms semicarbazone of PLP. The semicarbazone of PLP emits strongly at 460 nm when excited at 380 nm. Several metabolic intermediates were tested for the possible interference. Only pyridoxal was found to interfere. The interference can be corrected since pyridoxal emits at 380 nm when excited at 320 nm. Using this method we found that rabbit red cells in vivo are freely permeable to PLP.  相似文献   

13.
An enzyme which catalyzes a decomposition of α-aminoisobutyrate (AIB) was purified and its kinetic properties were investigated. Michaelis constants for AIB decomposing reaction are able to be calculated by Ping Pong initial velocity equation. This enzyme catalyzes also l-alanine: α-ketobutyrate transamination as well as AIB decomposing reaction. Approximately equal values of Michaelis constants were obtained for α-ketobutyrate and pyridoxal 5′-phosphate (PLP), which are common substrates of both reactions.

In higher concentration of the enzyme, transamination between PLP and AIB or l-alanine was detected, whereas the reaction between pyridoxamine 5′-phosphate and pyruvate was not observed. These results are probably ascribed to a difference in affinity of two coenzymes for the enzyme.  相似文献   

14.
Pyruvate kinase from Propionibacterium shermanii was shown to be activated by glucose-6-phosphate (G-6-P) at non-saturating phosphoenol pyruvate (PEP) concentrations but other glycolytic and hexose monophosphate pathway intermediates and AMP were without effect. Half-maximal activation was obtained at 1 mM G-6-P. The presence of G-6-P decreased both the PEP0.5V and ADP0.5V values and the slope of the Hill plots for both substrates. The enzyme was strongly inhibited by ATP and inorganic phosphate (Pi) at all PEP concentrations. At non-saturating (0.5 mM) PEP, half-maximal inhibition was obtained at 1.8 mM ATP or 1.4 mM Pi. The inhibition by both Pi and ATP was largely overcome by 4 mM G-6-P. The specific activity of pyruvate kinase was considerably higher in lactate-, glucose- and glycerol-grown cultures than that of the enzyme catalysing the reverse reaction, pyruvate, phosphate dikinase. It is suggested that the activity of pyruvate kinase in vivo is determined by the balance between activators and inhibitors such that it is inhibited during gluconeogenesis while, during glycolysis, the inhibition is relieved by G-6-P.Abbreviations PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate - Pi inorganic phosphate  相似文献   

15.
Adenylyl (5′,2′)-adenosine 5′-phosphate ((2′-5′)pA-A) was detected in crude crystals of 5′-AMP prepared from Penicillium nuclease (nuclease P1) digest of a technical grade yeast RNA. While (3′–5′)A-A was split by nuclease P1, spleen phosphodiesterase, snake venom phosphodiesterase or alkali, (2′–5′)A-A was not split by a usual level of nuclease P1 or spleen phosphodiesterase. Nuclease P1 digests of 12 preparations of technical grade yeast RNA tested were confirmed to contain (2′–5′)pA-A. Its content was about 1 to 2% of the AMP component of each RNA preparation. As poly(A) was degraded completely by the Penicillium enzyme into 5′-AMP without formation of any appreciable amount of (2′–5′)pA-A, the technical grade RNA is supposed to contain 2–5′ phosphodiester linkages in addition to 3′–5′ major linkages.  相似文献   

16.
17.
Pyridoxal 5′-phosphate (PLP) is a cofactor for dozens of B6 requiring enzymes. PLP reacts with apo-B6 enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B6 enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4′-aldehyde moiety forms covalent adducts with other compounds and non-B6 proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B6 enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.  相似文献   

18.
Sweet corn phosphorylase: purification and properties   总被引:1,自引:0,他引:1  
Sweet corn 1,4-α-glucan phosphorylase was purified 190-fold to a near homogeneous state. The enzyme had a molecular weight of about 315,000 on Sephadex G-200 chromatography. The pyridoxal 5′-phosphate content was found to 1 mole per 140,000 g protein, suggesting that the enzyme is dimeric. On sucrose density gradient ultracentrifugation the sweet corn phosphorylase was dissociated to an active monomeric species with a molecular weight of 150,000 and a sedimentation coefficient of 8 S. The priming specificity of the sweet corn phosphorylase was investigated; maltose was not a primer and maltotriose was the smallest apparent primer. The Michaelis constants for the maltosaccharide series from maltopentaose to maltooctaose were determined. The effect of d-enzyme on the apparent priming specificity of the enzyme was investigated. Adenosine diphosphoglucose and 2,3-diphosphoglycerate were found to inhibit the enzyme activity.  相似文献   

19.
Human cystathionine β-synthase (CBS) catalyzes a pyridoxal 5′-phosphate (PLP) dependent β-replacement reaction to synthesize cystathionine from serine and homocysteine. The enzyme is unique in bearing not only a catalytically important PLP but also heme. In order to study a regulatory process mediated by heme, we performed mutagenesis of Arg-51 and Arg-224, which have hydrogen-bonding interactions with propionate side chains of the prosthetic group. It was found that the arginine mutations decrease CBS activity by approximately 50%. The results indicate that structural changes in the heme vicinity are transmitted to PLP existing 20 Å away from heme. A possible explanation of our results is discussed on the basis of CBS structure.  相似文献   

20.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase (EC 1.4.3.5) purified from rabbit liver is competitively inhibited by the reaction product, pyridoxal 5′-phosphate. The Ki, 3 μM, is considerably lower than the Km for either natural substrate (18 and 24 μM for pyridoxamine 5′-phosphate and 25 and 16 μM for pyridoxine 5′-phosphate in 0.2 M potassium phosphate at pH 8 and 7, respectively). The Ki determined using a 10% rabbit liver homogenate is the same as that for the pure enzyme; hence, product inhibition invivo is probably not diminished significantly by other cellular components. Similar determinations for a 10% rat liver homogenate also show strong inhibition by pyridoxal 5′-phosphate. Since the reported liver content of free or loosely bound pyridoxal 5′-phosphate is greater than Ki, the oxidase in liver is probably associated with pyridoxal 5′-phosphate. These results also suggest that product inhibition of pyridoxamine-P oxidase may regulate the invivo rate of pyridoxal 5′-phosphate formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号