首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This neutron reflectometry study evaluates the structures resulting from different methods of preparing polymer-cushioned lipid bilayers. Four different techniques to deposit a dimyristoylphosphatidylcholine (DMPC) bilayer onto a polyethylenimine (PEI)-coated quartz substrate were examined: 1) vesicle adsorption onto a previously dried polymer layer; 2) vesicle adsorption onto a bare substrate, followed by polymer adsorption; and 3, 4) Langmuir-Blodgett vertical deposition of a lipid monolayer spread over a polymer-containing subphase to form a polymer-supported lipid monolayer, followed by formation of the outer lipid monolayer by either 3) horizontal deposition of the lipid monolayer or 4) vesicle adsorption. We show that the initial conditions of the polymer layer are a critical factor for the successful formation of our desired structure, i.e., a continuous bilayer atop a hydrated PEI layer. Our desired structure was found for all methods investigated except the horizontal deposition. The interaction forces between these polymer-supported bilayers are investigated in a separate paper (Wong, J. Y., C. K. Park, M. Seitz, and J. Israelachvili. 1999. Biophys. J. 77:1458-1468), which indicate that the presence of the polymer cushion significantly alters the interaction potential. These polymer-supported bilayers could serve as model systems for the study of transmembrane proteins under conditions more closely mimicking real cellular membrane environments.  相似文献   

2.
The torsion angle motions, generated from molecular dynamics (MD) simulations, of the two aliphatic chains of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) in its lipid monolayer were evaluated by comparing these motions to those of an equivalent isolated (free) n-alkane chain, and the same n-alkane chain in its crystal lattice. The time-dependent autocorrelation and (1,2)-, (1,3)-, (1,4)-, and (1,5)-cross-correlation functions were constructed to analyze the torsion angle motions. It was found that the torsion angle motions of the DMPC lipid monolayer aliphatic chains are intermediate to those of the free n-alkane chain and the same n-alkane chain in its crystal lattice, particularly for short correlation times. The torsion angle motions of the aliphatic chains of DMPC are also found to be essentially independent of the charge state on the head group. The linear aliphatic chains of a DMPC lipid monolayer behave most like the isolated n-alkane chains with respect to torsion angle flexibility, even though the pairs of aliphatic chains of each DMPC are part of an ordered monolayer assembly. The aliphatic chains of the DMPC molecules in their monolayer exhibit at least two types of wave motions. One of the wave motions is the same in form, though somewhat more diffuse, as a traveling wave found in n-alkane crystals. The other wave motion involves major torsion angle transitions, and has some characteristics of the soliton properties observed in n-alkane crystals near their respective melt transition temperatures. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
The technique of specular reflection of neutrons is applied for the first time to study the charge-dependent interaction of the protein spectrin and the polypeptide poly-L-lysine with model phospholipid monolayers in the condensed phase state. We first established the structure of a pure monolayer of dimyristolyphosphatidylcholine (DMPC) in both the expanded and condensed fluid phase states without protein in the subphase. The thickness of the hydrocarbon chains increases from 11.4 +/- 1.5 A in the expanded state to 15.8 +/- 1.5 A in the condensed state, whereas the head group region is approximately 10 A thick for both phase states. When spectrin is present in the subphase, the dimensions of DMPC in the condensed state are not significantly affected, but there is approximately 0.09 volume fraction spectrin in the head group region. Lipid-spectrin coupling is enhanced by electrostatic interaction, as the volume fraction of spectrin in the head group region increases to 0.22 in a mixed monolayer of DMPC and negatively charged dimyristolyphosphatidylglycerol in the condensed state. In contrast to spectrin, polylysine does not penetrate the head group region, but forms a layer electrostatically adsorbed to the charged head groups.  相似文献   

4.
The lipid bis(guanidinium)-tren-cholesterol (BGTC) is a cationic cholesterol derivative bearing guanidinium polar headgroups used for gene transfection either alone or formulated as liposomes with the zwitterionic lipid 1,2-di-[cis-9-octadecenoyl]-sn-glycero-3-phosphoethanolamine (DOPE). Previous investigations have shown its ability to strongly interact with DNA and form asymmetric lipid bilayers at the air/water interface when mixed with DOPE. Here, with a view to further investigate its physicochemical behavior, we studied the interactions of mixtures of BGTC with another zwitterionic lipid, 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine, (DMPC), with DNA at the air/water interface by using the Langmuir monolayer technique coupled with Brewster Angle Microscopy (BAM) and Polarization Modulation Infra Red Reflexion Absorption (PMIRRAS) spectroscopy and we investigate DNA–BGTC/DMPC interactions. We demonstrate that when DNA is injected into the subphase in excess compared to the positive charges of BGTC, it adsorbs to BGTC/DMPC monolayers at 20 mN/m whatever the lipid monolayer composition (1/5, 2/3 or 3/2 BGTC/DMPC molar ratio) and forms an incomplete monolayer of either isotropic or anisotropic double strands depending on the BGTC content in the monolayer. Compression beyond the collapse of some mixed DNA–BGTC/DMPC (2/3 and 3/2 molar ratio) systems leads to the formation of DNA monolayers underneath asymmetric lipid bilayers characterized by a bottom layer of BGTC in contact with DNA and a top layer mainly constituted of DMPC.  相似文献   

5.
Monolayer and multilayer Langmuir-Blodgett (LB) films of 6-O-alkylcelluloses with various chain lengths were prepared and studied. The surface pressure (pi)-area (A) isotherms of 6-O-alkylcelluloses exhibited characteristic behaviors depending on the length of the alkyl chain and temperature. 6-O-Stearylcellulose on the subphase formed a homogeneous monolayer at 10 mN m(-1). By transfer ratio, FT-IR, and contact angle measurements, it was proved that the monolayer of 6-O-stearylcellulose on the water surface was transferred successfully onto a substrate by a vertical dipping method to form a Z-type LB film. The transmission and reflection absorption IR spectrum indicated that the hydrocarbon chains had all-trans rotamers and were oriented nearly perpendicular to the surface in the film. AFM section analysis revealed that the thickness per layer was calculated to be 2.35 nm. These results suggested that the hydrocarbon chains were inclined at an angle of about 25.3 degrees to have high packing density in the alkyl region.  相似文献   

6.
A novel cellulose derivative, 6-O-dihydrophytylcellulose (DHPC), was first synthesized via a ring-opening polymerization and allowed to self-assemble onto an air-water interface. Langmuir-Blodgett (LB) films were characterized with atomic force microscope (AFM), UV-vis spectroscopy, and Fourier transform infrared spectroscopy. The surface pressure-area (pi-A) isotherms for DHPC and beta-carotene (betaC) mixture indicated strong interaction between these compounds to pack well. Thus, DHPC has the ability to anchor betaC in the monolayer. It was proved that a betaC-DHPC monolayer was transferred successfully onto a substrate, yielding Y-type LB films by UV spectroscopic analysis. The transmission and reflection-absorption IR spectra (RAS) indicated that the dihydrophytyl chains had almost trans-zigzag conformation and were oriented nearly perpendicular to the substrate. AFM section analysis revealed the thickness per layer to be 2.32 nm. Consequently, DHPC was found to be an appropriate matrix to fabricate the mixed LB films containing betaC.  相似文献   

7.
Charge density measurements and polarization modulation infrared reflection absorption spectroscopy were employed to investigate the spreading of small unilamellar vesicles of a dimyristoylphosphatidylcholine (DMPC)/cholesterol (7:3 molar ratio) mixture onto an Au (111) electrode surface. The electrochemical experiments demonstrated that vesicles fuse and spread onto the Au (111) electrode surface, forming a bilayer, at rational potentials -0.4 V < (E - Epzc) < 0.4 V or field strength <6 x 10(7) V m(-1). Polarization modulation infrared reflection absorption spectroscopy experiments provided information concerning the conformation and orientation of the acyl chains of DMPC molecules. Deuterated DMPC was used to subtract the contribution of C-H stretching bands of cholesterol and of the polar head region of DMPC from spectra in the C-H stretching region. The absorption spectra of the C-H stretch bands in the acyl chains were determined in this way. The properties of the DMPC/cholesterol bilayer have been compared with the properties of a pure DMPC bilayer. The presence of 30% cholesterol gives a thicker and more fluid bilayer characterized by a lower capacity and lower tilt angle of the acyl chains.  相似文献   

8.
The association of anionic polyelectrolytes such as dextran sulfate (DS) to zwitterionic phospholipid surfaces via Ca(2+) bridges results in a perturbation of lipid packing at physiologically relevant Ca(2+) concentrations. Lipid area compression was investigated in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) multilamellar bilayer dispersions by (2)H-NMR and in monolayer studies. Binding of DS to DMPC surfaces via Ca(2+) results in denser lipid packing, as indicated by higher lipid chain order. DMPC order parameters are homogeneously increased throughout the lipid bilayer. Higher order translates into more extended hydrocarbon chains and decreased average lipid area per molecule. Area compression is reported as a function of DS concentration and molecular weight. Altering the NaCl and Ca(2+) concentrations modified electrostatic interactions between DS and phospholipid. A maximal area reduction of DeltaA = 2.7 A(2) per DMPC molecule is observed. The lipid main-phase transition temperature increases upon formation of DMPC/Ca(2+)/DS-complexes. Lipid area compression after addition of DS and Ca(2+) to the subphase was also observed in monolayer experiments. A decrease in surface tension of up to 3.5 mN/m at constant molecular area was observed. DS binds to the lipid headgroups by formation of Ca(2+) bridges without penetrating the hydrophobic region. We suggest that area compression is the result of an attractive electrostatic interaction between neighboring lipid molecules induced by high local Ca(2+) concentration due to the presence of DS. X-ray diffraction experiments demonstrate that DS binding to apposing bilayers reduces bilayer separation. We speculate that DS binding alters the phase state of low-density lipoproteins that associate with polyelectrolytes of the arterial connective tissue in the early stages of arteriosclerosis.  相似文献   

9.
Small-angle X-ray diffraction was used to determine the topography of (-)-delta 8-tetrahydrocannabinol in partially hydrated dimyristoylphosphatidylcholine bilayers. Electron density profiles of lipid bilayers in the presence and absence of the cannabinoid were calculated using Fourier transform. Step-function equivalent profiles were then constructed to obtain the absolute electron density scale. We have compared the electron density profiles of the above preparations to determine the location of the drug molecule in the bilayer. By using (-)-5'-iodo-delta 8-tetrahydrocannabinol in parallel experiments, we were also able to locate the iodine atom in the bilayer and deduce the conformation of the cannabinoid side alkyl chain. All comparisons were made between different preparations having the same mesomorphic form and total period repeat distance. To achieve this, we have carried out X-ray diffraction experiments at various temperatures to cover the different mesomorphic phases and combined our data with the corresponding results from differential scanning calorimetry. Based on the results of this work and previous data on the orientation of the cannabinoid in model membranes, we concluded that the phenolic hydroxy group of the drug molecule exists near the carbonyl groups of DMPC and that the average position of the iodine atom is approx. 5.5 A from the center (terminal methyl region) of the DMPC bilayer. This requires the cannabinoid side-chain to assume an orientation parallel to the bilayer chains.  相似文献   

10.
Binary mixtures of cholesterol, ergosterol, and lanosterol with phosphatidylcholines differing in the length of the saturated acyl chains, viz 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-myristoyl-sn-glycero-3-phosphocholine (DMPC), were analyzed using a Langmuir balance for recording force-area (pi-A) and surface potential-area (psi-A) isotherms. A progressive disappearance of the liquid expanded-liquid condensed transition was observed in mixed monolayers with DPPC after the increase in the content of all three sterols. For fluid DMPC matrix, no modulation of the monolayer phase behavior due to the sterols was evident with the exception of lanosterol, for which a pronounced discontinuity between mole fractions of X = 0.3 and X = 0.75 was discernible in the compression isotherms. Condensing and expanding effects in force-area (pi-A) isotherms due to varying X(sterols) and differences in the monolayer physical state were assessed from the values for the interfacial compression moduli. Surface potential measurements support the notion that cholesterol and ergosterol, but not lanosterol, reduce the penetration of water into the lipid monolayers. Examination of the excess free energy of mixing revealed an enhanced stability of binary monolayers containing cholesterol compared to those with ergosterol or lanosterol; the differences are emphasized in the range of surface pressure values found in natural membranes.  相似文献   

11.
The growth structure of DMPC lipid layers on hydrophobic and hydrophilic alkylsilane-based self-assembled monolayers adsorbed on silicon has been investigated by means of X-ray reflectometry and atomic force microscopy. Hydrophilic modification of hydrophobically terminated ODS-SAMs has been achieved by dose-controlled irradiation with DUV light. While island formation of small DMPC bilayer islands is observed on hydrophobic SAM surfaces, closed layers of DMPC monolayers are formed on hydrophilic SAM surfaces. Furthermore, DMPC adsorption on chemically micropatterned substrates with alternating hydrophobic/hydrophilic surface properties has been studied by imaging ellipsometry and photoemission microscopy. Indication for at least partial bridging of hydrophobic areas by an adsorbed DMPC monolayer has been found.  相似文献   

12.
The structure of polymer-decorated phospholipid monolayers at the solid-solution interface was investigated using neutron reflectometry. The monolayers were composed of distearoylphosphatidylethanolamine (DSPE) matrixed with varying amounts of DSPE-PEG (DSPE with polyethylene glycol covalently grafted to its headgroup). Mixed lipid monolayers were Langmuir-Blodgett deposited onto hydrophobic quartz or silicon substrates, previously hydrophobized by chemically grafting a robust monolayer of octadecyltrichlorosilane (OTS). We show that this method results in homogeneous and continuous phospholipid monolayers on the silanated substrates and determine that the grafted PEG chains extend away from the monolayers into the solvent phase as a function of their density, as expected from scaling theories. In addition, ligands were coupled to the end of the PEG chains and selective binding was demonstrated using fluorescence microscopy. Our results demonstrate that these constructs are ideal for further characterization and studies with well-defined monomolecular films.  相似文献   

13.
Using implicit solvent atomistic model and replica exchange molecular dynamics, we study binding of Aβ monomer to zwitterionic dimyristoylphosphatidylcholine (DMPC) lipid monolayer. Our results suggest that Aβ binding to the monolayer is governed primarily by positively charged and aromatic amino acids. Lysine residues tend to interact with surface choline and phosphorous lipid groups, whereas aromatic amino acids penetrate deeper into the monolayer, reaching its hydrophobic core. We show that binding to the DMPC monolayer causes a dramatic conformational transition in Aβ monomer, resulting in chain extension, loss of intrapeptide interactions, and formation of β-structure. This conformational transition is far more significant than that occurring during the initial stages of aggregation in water. We also found that Aβ binding perturbs surface ordering of lipids interacting with Aβ.  相似文献   

14.
The present study investigates the relationships between structural polymorphism, adsorption onto membrane mimetic support, lipid disturbance, and biological activity of bactericidal 23-residue, glycine-leucine-rich dermaseptin orthologues from the Phyllomedusinae frog skin, the "plasticins". Biological activities were evaluated using the membrane models DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) for prokaryotic membranes and DMPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine) for eukaryotic membranes. We performed a conformational analysis of plasticins by molecular simulations and spectroscopic methods and analyzed phospholipid perturbations by infrared spectroscopy. Adsorption onto synthetic model membranes was quantified by surface plasmon resonance. Biological assays including antimicrobial and membrane potential-dissipating activities, together with hemolytic tests and imaging analysis of cytotoxicity, were carried out to clarify the peptide-membrane interactions. Two major groups were distinguished: (i) Neutral plasticins revealed the presence of strong beta-structures with the zwitterionic or anionic phospholipid vesicles. They were weakly adsorbed in the range of antibacterial activity concentrations (micromolar). Nevertheless, for millimolar concentrations, they caused perturbations at the interface peptide-DMPG vesicles and in the bilayer alkyl chains, suggesting insertion into bacterial membranes. (ii) Cationic plasticins revealed multiple conformational transitions, including destabilized helix states, beta-structures, and disordered states. Peptide-lipid complex densities depended on hydrophobic bond strengths. The most soluble cationic plasticins were strongly adsorbed, with stable peptide-lipid interactions inducing noticeable perturbations of bilayer alkyl chains, pointing out possible insertion into bacterial membranes. In contrast, cytotoxic plasticins were less adsorbed, with less stable peptide-lipid interactions causing membrane dehydration, formation of peptide-membrane hydrogen bonds, and little disturbances of lipid alkyl chains. These characteristics could be compatible with their putative action on intracellular targets leading to apoptosis.  相似文献   

15.
The rotational motions of the biamphiphilic polyenes (bolapolyenes) dimethyl all-(E)-octacosa-10,12,14,16,18-pentaenedioate (DE28:5) and dimethyl all-(E)-tetratriaconta-13,15,17,19,21-pentaenedioate (DE34:5), with head-to-head distances of 34 and 42A, respectively, have been examined by fluorescence anisotropy methods. The membrane-spanning bolapolyenes, which contain a central emitting pentaene group tethered to two methoxycarbonyl opposite polar heads by symmetric C(8) (DE28:5) and C(11) (DE34:5) polymethylene chains, were dispersed in lipid bilayers of DPPC or DMPC, and the stationary and picosecond-resolved emission was recorded as a function of temperature. In fluid-phase DMPC bilayers, three relaxation times could be determined, assigned to fast (0.2 and 2ns) single-bond isomerization processes localized on the alkyl chains, and to whole-molecule oscillations ( approximately 11ns), respectively. The anisotropy decay parameters were further analyzed in terms of a diffusive model for wobbling in a Gaussian ordering potential, to assess the anchoring effect of the symmetric polar heads. In this way, the average rotational diffusion constant of the bolapolyenes, D( perpendicular), could be estimated as 0.022-0.026rad(2) ns(-1) (DMPC bilayers, 35 degrees Celsius), a value that is only 1/3 of that corresponding to the related pentaene fatty acid spanning a single membrane monolayer. In contrast, the amplitude of the equilibrium orientational distribution (theta(half-cone) approximately 50 degrees ) is very similar for both the transmembrane and the single-headed polyenes. The reorientational oscillations of the central emitting group in the bolapolyenes necessarily would produce large-amplitude (2-5A) and very fast (ns) translational motions of the polar heads.  相似文献   

16.
W C Wimley  T E Thompson 《Biochemistry》1990,29(5):1296-1303
The rate and extent of spontaneous exchange of dimyristoylphosphatidylcholine (DMPC) from large unilamellar vesicles (LUV) composed of either DMPC or mixtures of DMPC/distearoylphosphatidylcholine (DSPC) have been examined under equilibrium conditions. The phase state of the vesicles ranged from all-liquid-crystalline through mixed gel/liquid-crystalline to all-gel. The exchange rate of DMPC between liquid-crystalline DMPC LUV, measured between 25 and 55 degrees C, was found to have an Arrhenius activation energy of 24.9 +/- 1.4 kcal/mol. This activation energy and the exchange rates are very similar to those obtained for the exchange of DMPC between DMPC small unilamellar vesicles (SUV). The extent of exchange of DMPC in LUV was found to be approximately 90%. This is in direct contrast to the situation in DMPC SUV where only the lipid in the outer monolayer is available for exchange. Thus, transbilayer movement (flip-flop) is substantially faster in liquid-crystalline DMPC LUV than in SUV. Desorption from gel-phase LUV has a much lower rate than gel-phase SUV with an activation energy of 31.7 +/- 3.7 kcal/mol compared to 11.5 +/- 2 kcal/mol reported for SUV. A defect-mediated exchange in gel-phase SUV, which is not the major pathway for exchange in LUV, is proposed on the basis of the thermodynamic parameters of the activation process. Surprisingly, the rates of DMPC exchange between DMPC/DSPC two-component LUV, measured over a wide range of compositions and temperatures, were found to exhibit very little dependence on the composition or phase configuration of the vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A 15-ns molecular dynamics simulation of the fully hydrated dimyristoylphosphatidylcholine-cholesterol (DMPC-Chol) bilayer containing approximately 22 mol% Chol was carried out. An 8-ns trajectory was analysed to investigate the effect of Chol on the chain packing in the bilayer core. While the packing of DMPC chains on the smooth alpha-face side of the Chol ring is similar to that in the pure DMPC bilayer, the packing on the rough beta-face side is less regular and less tight. Two methyl groups located on the Chol beta-face disturb the packing; in effect, van der Waals (vdW) interactions between Chol rings and DMPC chains are weaker than the ones between sole DMPC chains. VdW interactions between an alkyl chain of DMPC and an isooctyl tail of Chol are similarly strong as those between two DMPC chains.  相似文献   

18.
The influence of ethanol on single phospholipid monolayers at the water/air interface and in foam films has been investigated. Grazing incidence X-ray diffraction investigations (GIXD) of Langmuir monolayers from 1,2-distearoyl-phosphatidylcholine (DSPC) spread on water subphases with different amounts of ethanol were performed. The thickness and free specific energy of formation of foam films stabilized by 1,2-dimyristoyl-phosphatidylcholine (DMPC) at different concentrations of ethanol in the film forming dispersions were measured. The GIXD investigations show that the tilt angle of the alkyl chains in the PC lipid monolayer decreases with increasing concentration of ethanol caused by a decrease of the diameter of the head groups. With increasing ethanol content of the solution also the thickness of the aqueous core of PC lipid foam films decreases. We assume that ethanol causes a decreasing probability for the formation of hydrogen bonds of water molecules to the PC head groups. The distinct difference between the effects of ethanol on lipid bilayers as described in the literature and on monolayers and foam films found in this study is discussed. Whereas PC monolayers at the water/air interface become unstable above 25 vol.% ethanol, the PC foam films are stable up to 50 vol.% ethanol. This is related to the decrease of the surface excess energy per lipid molecule by the interaction between the two film surfaces.  相似文献   

19.
Mitochondrial NADH-ubiquinone oxidoreductase (Complex I) is a lipoprotein enzyme containing phosphatidylcholine (PC), phosphatidylethanolamine (PE) and cardiolipin. Enzyme preparations containing endogenous cardiolipin and a range of either soyabean PC or dimyristoylphosphatidylcholine (DMPC) concentrations have been made. Using a spin-labelled fatty acid, two probe environments differing in mobility have been shown to be present. The fatty acid probe has a relative binding constant (or partition coefficient between lipid and protein) of unity. The boundary layer or lipid annulus reported by the probe has a value of approx. 300 lipid molecules per molecule of enzyme FMN in preparations containing soyabean PC, or DMPC above the phase transition temperature of the latter. In soyabean PC-replaced enzyme the apparent size of the boundary layer is independent of temperature between 30 degrees C and 14 degrees C but shows a modest increase to about 400 lipid molecules per molecule of FMN between 14 degrees C and 2 degrees C. Complex I replaced with high concentrations of DMPC gives non-linear Arrhenius plots of NADH-ubiquinone oxidoreductase activity. The results of the ESR experiments show that both boundary layer and bulk lipid must be motionally restricted for this to occur. Thus, the change in activity is probably not caused by an effect exerted directly on the catalytic activity of the enzyme but is more likely due to restriction of free diffusion of ubiquinone to its site of reduction.  相似文献   

20.
We present here the results of 1-ns molecular dynamics (MD) simulations of two ideally amphipathic lytic peptides, namely LK(15) and LK(9), in a 1,2-dimyristoylphosphatidylcholine monolayer with two different cross-sectional areas per lipid of 80 A(2) (loose film) and 63 A(2) (tight standard film). These peptides are lytic, ideally amphipathic with a minimalist composition L(i)K(j) and the following sequences: H(2)N-KLLKLLLKLLLKLLK-CO-Ph for LK(15) and H(2)N-KLKLKLKLK-CO-Ph for LK(9). From experimental data, LK(15) exhibits an alpha-helical secondary structure, whereas LK(9) was found to form antiparallel beta-sheets at the interface of a DMPC monolayer. Whatever the specific lipid surface is, the two peptides exhibit very different behavior: the alpha-helix inserts deeply into the monolayer whereas the beta-sheeted peptide stays at the surface within the upper polar part of the monolayer. In all cases, a loose monolayer (80 A(2)) results in noticeable artifacts whereas a monolayer with standard specific surface leads to very reliable behavior well in accordance with experimental data. Despite their different insertion depth, the two peptides exhibit identical lytic efficiency. This is very likely a direct consequence of the very strong Van der Waals interactions between the fatty alkyl chains of the lipids and the highly lipophilic lower part of the peptide, resulting in an identical thinning of the two monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号