首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The primary bile acid receptor farnesoid X receptor (FXR) maintains lipid and glucose homeostasis by regulating expression of numerous bile acid-responsive genes, including an orphan nuclear receptor and metabolic regulator SHP. Using SHP as a model gene, we studied how FXR activity is regulated by p300 acetylase. FXR interaction with p300 and their recruitment to the SHP promoter and acetylated histone levels at the promoter were increased by FXR agonists in mouse liver and HepG2 cells. In contrast, p300 recruitment and acetylated histones at the promoter were not detected in FXR-null mice. p300 directly interacted with and acetylated FXR in vitro. Overexpression of p300 wild type increased, whereas a catalytically inactive p300 mutant decreased, acetylated FXR levels and FXR transactivation in cells. While similar results were observed with a related acetylase, CBP, GCN5 did not enhance FXR transactivation, and its recruitment to the promoter was not increased by FXR agonists, suggesting functional specificity of acetylases in FXR signaling. Down-regulation of p300 by siRNA decreased acetylated FXR and acetylated histone levels, and occupancy of FXR at the promoter, resulting in substantial inhibition of SHP expression. These results indicate that p300 acts as a critical coactivator of FXR induction of SHP by acetylating histones at the promoter and FXR itself. Surprisingly, p300 down-regulation altered expression of other metabolic FXR target genes involved in lipoprotein and glucose metabolism, such that beneficial lipid and glucose profiles would be expected. These unexpected findings suggest that inhibition of hepatic p300 activity may be beneficial for treating metabolic diseases.  相似文献   

3.
Targeting farnesoid X receptor for liver and metabolic disorders   总被引:3,自引:0,他引:3  
The farnesoid X receptor (FXR) is a metabolic nuclear receptor expressed in the liver, intestine, kidney and adipose tissue. By regulating the expression and function of genes involved in bile acid (BA) synthesis, uptake and excretion, FXR has emerged as a key gene involved in the maintenance of cholesterol and BA homeostasis. FXR ligands are currently under clinical investigation for the treatment of cholestasis, dyslipidemic disorders and conditions of insulin resistance in type 2 diabetes and non-alcoholic steatohepatitis (NASH). Because activation of FXR impacts a considerable number of genes, development of FXR modulators that selectively regulate specific pathways will limit potentially undesirable side effects. Interaction of FXR with other BAs and xenobiotics sensors such as the constitutive androstane receptor and the pregnane X receptor might allow the development of combination therapies for liver and metabolic disorders.  相似文献   

4.
法尼酯衍生物X受体(farnesoid X receptor,FXR)是一种胆汁酸受体,属于核受体超家族成员。FXR通过调控一系列基因的表达,在胆汁酸、脂质和糖代谢中发挥重要作用,进而有望成为治疗一系列代谢性疾病的药物靶点。本文将就FXR的相关研究进展作一综述。  相似文献   

5.
6.
7.
Endogenous bile acids are ligands for the nuclear receptor FXR/BAR.   总被引:12,自引:0,他引:12  
The major metabolic pathway for elimination of cholesterol is via conversion to bile acids. In addition to this metabolic function, bile acids also act as signaling molecules that negatively regulate their own biosynthesis. However, the precise nature of this signaling pathway has been elusive. We have isolated an endogenous biliary component (chenodeoxycholic acid) that selectively activates the orphan nuclear receptor, FXR. Structure-activity analysis defined a subset of related bile acid ligands that activate FXR and promote coactivator recruitment. Finally, we show that ligand-occupied FXR inhibits transactivation from the oxysterol receptor LXR alpha, a positive regulator of cholesterol degradation. We suggest that FXR (BAR) is the endogenous bile acid sensor and thus an important regulator of cholesterol homeostasis.  相似文献   

8.
9.
10.
SIRT1, a highly conserved NAD(+)-dependent protein deacetylase, is a key metabolic sensor that directly links nutrient signals to animal metabolic homeostasis. Although SIRT1 has been implicated in a number of hepatic metabolic processes, the mechanisms by which hepatic SIRT1 modulates bile acid metabolism are still not well understood. Here we report that deletion of hepatic SIRT1 reduces the expression of farnesoid X receptor (FXR), a nuclear receptor that regulates bile acid homeostasis. We provide evidence that SIRT1 regulates the expression of FXR through hepatocyte nuclear factor 1α (HNF1α). SIRT1 deficiency in hepatocytes leads to decreased binding of HNF1α to the FXR promoter. Furthermore, we show that hepatocyte-specific deletion of SIRT1 leads to derangements in bile acid metabolism, predisposing the mice to development of cholesterol gallstones on a lithogenic diet. Taken together, our findings indicate that SIRT1 plays a vital role in the regulation of hepatic bile acid homeostasis through the HNF1α/FXR signaling pathway.  相似文献   

11.
The Farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids (BAs). BAs are amphipathic molecules that serve as fat solubilizers in the intestine under postprandial conditions. In the post-absorptive state, BAs bind FXR in the hepatocytes, which in turn provides feedback signals on BA synthesis and transport and regulates lipid, glucose and amino acid metabolism. Therefore, FXR acts as a homeostat of all three classes of nutrients, fats, sugars and proteins. Here we re-analyze the function of FXR in the perspective of nutritional metabolism, and discuss the role of FXR in liver energy homeostasis in postprandial, post-absorptive and fasting/starvation states.FXR, by regulating nutritional metabolism, represses autophagy in conditions of nutrient abundance, and controls the metabolic needs of proliferative cells. In addition, FXR regulates inflammation via direct effects and via its impact on nutrient metabolism. These functions indicate that FXR is an attractive therapeutic target for liver diseases.  相似文献   

12.
法尼醇X受体(Farnesoid X Receptor,FXR)属于代谢性核受体,是需配体激活的转录因子,在肝脏胆汁酸、脂质代谢过程,肝脏炎症和肿瘤的发展过程中起着重要的调节作用。小异二聚体伴侣受体(Small Heterodimer Partner,SHP)是核受体超家族中的一个特殊成员,在特异的组织中作为转录调节的共抑制因子,抑制其他多种转录因子的活性,在众多代谢通路中起到了负性调节作用。近年来研究发现,核受体FXR通过对SHP的调控来实现其在肝脏的多种功能。本文着重对FXR调节SHP的机制及FXR-SHP轴在肝脏中作用进行综述。  相似文献   

13.
We evaluated the metabolic impact of farnesoid X receptor (FXR) activation by administering a synthetic FXR agonist (GW4064) to mice in which obesity was induced by a high fat diet. Administration of GW4064 accentuated body weight gain and glucose intolerance induced by the high fat diet and led to a pronounced worsening of the changes in liver and adipose tissue. Mechanistically, treatment with GW4064 decreased bile acid (BA) biosynthesis, BA pool size, and energy expenditure, whereas reconstitution of the BA pool in these GW4064-treated animals by BA administration dose-dependently reverted the metabolic abnormalities. Our data therefore suggest that activation of FXR with synthetic agonists is not useful for long term management of the metabolic syndrome, as it reduces the BA pool size and subsequently decreases energy expenditure, translating as weight gain and insulin resistance. In contrast, expansion of the BA pool size, which can be achieved by BA administration, could be an interesting strategy to manage the metabolic syndrome.  相似文献   

14.
15.
16.
FXR (farnesoid X receptor) is a bile acid-activated nuclear receptor that regulates not only the biosynthesis and enterohepatic circulation of bile acids, but also triglyceride, cholesterol and glucose metabolism. FXR-mediated signaling pathways have become promising novel drug targets for the treatment of common metabolic and hepatic diseases. With the aim of uncovering novel modulators of FXR and further elucidating the molecular basis of FXR activation, we investigated the structure–activity relationships of a variety of naturally occurring sterols structurally related to bile acids in terms of their FXR agonist activity. Here, we report that the ability of bile alcohols to activate FXR varied with the position and number of hydroxyl groups existing in the steroid side chain of bile alcohols. In addition, we showed that the shortening of the steroid side chain of bile acids as well as bile alcohols resulted in a decline of the ability of these agents to activate FXR. Thus, we provide new insights into the structure–activity relationships of bile acids and bile alcohols as FXR agonists.  相似文献   

17.
The farnesoid X receptor (FXR) is involved in glucose and lipid metabolism regulation, which makes it an attractive target for the metabolic syndrome, dyslipidemia, atherosclerosis, and type 2 diabetes. In order to find novel FXR agonists, a structure-based pharmacophore model collection was developed and theoretically evaluated against virtual databases including the ChEMBL database. The most suitable models were used to screen the National Cancer Institute (NCI) database. Biological evaluation of virtual hits led to the discovery of a novel FXR agonist with a piperazine scaffold (compound 19) that shows comparable activity as the endogenous FXR agonist chenodeoxycholic acid (CDCA, compound 2).  相似文献   

18.
Dyslipidemia is an important risk factor for cardiovascular disease (CVD) and atherosclerosis. When dyslipidemia coincides with other metabolic disorders such as obesity, hypertension, and glucose intolerance, defined as the metabolic syndrome (MS), individuals present an elevated risk to develop type 2 diabetes (T2D) as well as CVD. Because the MS epidemic represents a growing public health problem worldwide, the development of therapies remains a major challenge. Alterations of bile acid pool regulation in T2D have revealed a link between bile acid and metabolic homeostasis. The bile acid receptors farnesoid X receptor (FXR) and TGR5 both regulate lipid, glucose, and energy metabolism, rendering them potential pharmacological targets for MS therapy. This review discusses the mechanisms of metabolic regulation by FXR and TGR5 and the utility relevance of natural and synthetic modulators of FXR and TGR5 activity, including bile acid sequestrants, in the treatment of the MS.  相似文献   

19.
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increased risk in patients with metabolic syndrome. There are no FDA-approved treatments, but FXR agonists have shown promising results in clinical studies for NAFLD management. In addition to FXR, fibroblast growth factor receptor FGFR4 is a key mediator of hepatic bile acid synthesis. Using N-acetylgalactosamine–conjugated siRNA, we knocked down FGFR4 specifically in the liver of mice on chow or high-fat diet and in mouse primary hepatocytes to determine the role of FGFR4 in metabolic processes and hepatic steatosis. Liver-specific FGFR4 silencing increased bile acid production and lowered serum cholesterol. Additionally, we found that high-fat diet–induced liver steatosis and insulin resistance improved following FGFR4 knockdown. These improvements were associated with activation of the FXR-FGF15 axis in intestinal cells, but not in hepatocytes. We conclude that targeting FGFR4 in the liver to activate the intestinal FXR-FGF15 axis may be a promising strategy for the treatment of NAFLD and metabolic dysfunction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号