首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The thiolation reaction was carried out in a benzene solution at 80°C and p‐substituted ketones and mercaptoacetic acid in a molar ratio (1:4) of in the presence of a catalytic amount of toluene sulfonic acids. The enzyme inhibition activities of the novel amides of 1,1‐bis‐(carboxymethylthio)‐1‐arylethanes derivatives were investigated. These novel amides of 1,1‐bis‐(carboxymethylthio)‐1‐arylethanes derivatives showed good inhibitory action against acetylcholinesterase (AChE) butyrylcholinesterase (BChE), and human carbonic anhydrase I and II isoforms (hCA I and II). AChE inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. Many clinically established drugs are carbonic anhydrase inhibitors, and it is highly anticipated that many more will eventually find their way into the market. The novel synthesized compounds inhibited AChE and BChE with Ki values in the range of 0.64–1.47 nM and 9.11–48.12 nM, respectively. On the other hand, hCA I and II were effectively inhibited by these compounds, with Ki values between 63.27–132.34 and of 29.63–127.31 nM, respectively.  相似文献   

2.
In this study, the effects of the two Schiff base derivatives and their metal complexes were tested for MDA concentration, which is an indicator of lipid peroxidation, antioxidant vitamin A, vitamin E, and vitamin C levels in cell culture. A comparison was performed among the groups and it was observed that MDA, vitamin A, vitamin E, and vitamin C concentrations were statistically changed. According to the results, all compounds caused a significant oxidative stress without Zn complexes. Moreover, Mn(II), Cu(II), Zn(II), and Ni(II) complexes of Schiff bases derived from a condensation of 1,2‐bis (p‐aminophenoxy) ethane with naphthaldehydes and 4‐methoxy benzaldehyde were examined in terms of antitumor activity against MCF‐7 human breast cancer and L1210 murine leukemia cells. Furthermore, the derivatives were tested for antioxidative and prooxidative effects on MCF‐7 breast cancer cells. The compounds which were tested revealed that there was an antitumor activity for MCF‐7 and L 1210 cancer cells. Also, some of the compounds induced oxidative harmful.  相似文献   

3.
During this investigation, N,N′‐bis‐azidomethylamines, N,N′‐bis‐cyanomethylamine, new alkoxymethylamine and chiral derivatives, which are considered to be a new generation of multifunctional compounds, were synthesized, functional properties were investigated, and anticholinergic and antidiabetic properties of those compounds were studied through the laboratory tests, and it was approved that they contain physiologically active compounds rather than analogues. Novel N‐bis‐cyanomethylamine and alkoxymethylamine derivatives were effective inhibitors of the α‐glycosidase, cytosolic carbonic anhydrase I and II isoforms, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) with Ki values in the range of 0.15–13.31 nM for α‐glycosidase, 2.77–15.30 nM for human carbonic anhydrase isoenzymes I (hCA I), 3.12–21.90 nM for human carbonic anhydrase isoenzymes II (hCA II), 23.33–73.23 nM for AChE, and 3.84–48.41 nM for BChE, respectively. Indeed, the inhibition of these metabolic enzymes has been considered as a promising factor for pharmacologic intervention in a diversity of disturbances.  相似文献   

4.
Some novel derivatives of thiosemicarbazide and 1,2,4‐triazole‐3‐thiol were synthesized and evaluated for their biological activities. The title compounds were prepared starting from readily available pyridine‐2,5‐dicarboxylic acid. The reaction carboxylic acid with absolute ethanol afforded the corresponding dimethyl pyridine‐2,5‐dicarboxylate ( 1 ). The reaction of dimethyl‐2,5‐pyridinedicarboxylate ( 1 ) with hydrazine hydrate good yielded pyridine‐2,5‐dicarbohydrazide ( 2 ). Refluxing compound 2 with alkyl/aryl isothiocyanate derivatives for 3–8 h afforded 1,4‐disubstituted thiosemicarbazides ( 3a–e ). Base‐catalyzed intra‐molecular dehydrative cyclization of these intermediates furnished the 4,5‐disubstituted bis‐mercaptotriazoles ( 4a–e ) in good yield (85%–95%). Among the target compounds, 2,2′‐(pyridine‐2,5‐diyldicarbonyl)bis[N‐(p‐methoxyphenyl)hydrazinecarbothioamide] ( 3c ) showed very high activity with value of 72.93% against 1,1‐diphenyl‐2‐picrylhydrazyl free radical at the concentration of 25 μg/mL. The inhibitory effects of the target compounds against acetylcholinesterase (AChE), hCA I, and II were studied. AChE, cytosolic hCA I and II isoforms were potently inhibited by synthesized these derivatives with Kis in the range of 3.07 ± 0.76–87.26 ± 29.25 nM against AChE, in the range of 1.47 ± 0.37–10.06 ± 2.96 nM against hCA I, and in the range of 3.55 ± 0.57–7.66 ± 2.06 nM against hCA II, respectively.  相似文献   

5.
In this study, a series of novel bis‐sulfone compounds ( 2a‐2j ) were synthesized by oxidation of the bis‐sulfides under mild reaction conditions. The bis‐sulfone derivatives were characterized by 1H‐NMR, 13C‐NMR, Fourier‐transform infrared spectroscopy, and elemental analysis techniques. Nuclear Overhauser effect experiments were performed to determine the orientation of the sulfonyl groups in bis‐sulfone derivatives. Here, we report the synthesis and testing of novel bis‐sulfone compound–based hybrid scaffold of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors for the development of novel molecules toward the therapy of Alzheimer's disease. The novel synthesized bis‐sulfone compounds demonstrated Ki values between 11.4 ± 3.4 and 70.7 ± 23.2 nM on human carbonic anhydrase I isozyme (hCA I), 28.7 ± 6.6 to 77.6 ± 5.6 nM on human carbonic anhydrase II isozyme (hCA II), 18.7 ± 2.61 to 95.4 ± 25.52 nM on AChE, and 9.5 ± 2.1 to 95.5 ± 1.2 nM on BChE enzymes. The results showed that novel bis‐sulfone derivatives can have promising drug potential for glaucoma, leukemia, epilepsy, and Alzheimer's disease, which are associated with the high enzymatic activity of hCA I, hCA II, AChE, and BChE enzymes.  相似文献   

6.
Breast Cancer (BCa) is the most often diagnosed cancer among women who were in the late 1940’s. Breast cancer growth is largely dependent on the expression of estrogen and progesterone receptor. Breast cancer cells may have one, both, or none of these receptors. The treatment for breast cancer may involve surgery, hormonal therapy (Tamoxifen, an aromatase inhibitor, etc.) and oral chemotherapeutic drugs. The molecular docking technique reported the findings on the potential binding modes of the 2‐(2‐bromo‐3‐nitrophenyl)‐5‐phenyl‐1,3,4‐oxadiazole derivatives with the estrogen receptor (PDB ID: 3ERT). The 1,3,4‐oxadiazole derivatives 4a – 4j have been synthesized and described by spectroscopic method. 2‐(2‐Bromo‐6‐nitrophenyl)‐5‐(4‐bromophenyl)‐1,3,4‐oxadiazole ( 4c ) was reconfirmed by single‐crystal XRD. All the compounds have been tested in combination with generic Imatinib pharmaceutical drug against breast cancer cell lines isolated from Caucasian woman MCF‐7, MDA‐MB‐453 and MCF‐10A non‐cancer cell lines. The compounds with the methoxy (in 4c ) and methyl (in 4j ) substitution were shown to have significant cytotoxicity, with 4c showing dose‐dependent activation and decreased cell viability. The mechanism of action was reported by induced apoptosis and tested by a DNA enzyme inhibitor experiment (ELISA) for Methyl Transferase. Molecular dynamics simulations were made for hit molecule 4c to study the stability and interaction of the protein?ligand complex. The toxicity properties of ADME were calculated for all the compounds. All these results provide essential information for further clinical trials.  相似文献   

7.
Benzimidazoles of both natural and synthetic sources are the key components of many bio-active compounds. Several reports have shown antifungal, antiviral, H(2) receptor blocker and antitumor activities for benzimidazoles and their derivatives. In this study, we synthesized twelve bis-benzimidazole derivatives by selecting di(1H-benzo[d]imidazol-2-yl)methane as the main compound. The numbers of carbons at 2 positions of bis-benzimidazole derivatives were changed from 1 to 4, and derivatives were synthesized with methyl substitutions at 5- and/or 6- positions. The compounds were screened via in vitro plasmid superciol relaxation assays using mammalian DNA topoisomerase I and cytostatic assays were carried out against HeLa (cervix adenocarcinoma), MCF7 (breast adenocarcinoma) and A431 (skin epidermoid carcinoma) cells for selected derivatives. Our results suggest that the malonic acid derivatives of bis-benzimidazoles, namely, bis(5-methyl-1H-benzo[d]imidazol-2-yl)methane and bis(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)methane, were remarkably active compounds in interfering with DNA topoisomerase I and the former compound was also found to be cytotoxic against MCF7 and A431 cells. The inhibitory effects obtained with these derivatives are significant as these compounds can be potential sources of anticancer agents.  相似文献   

8.
An efficient synthetic strategy to 3‐methylidene‐2,3‐dihydroquinolin‐4(1H)‐ones variously substituted in position 2 has been developed. The title compounds were synthesized in the reaction sequence involving reaction of diethyl methylphosphonate with methyl 2‐(tosylamino)benzoate, condensation of thus formed diethyl 2‐oxo‐2‐(2‐N‐tosylphenyl)ethylphosphonate with various aldehydes followed by successful application of the obtained 3‐(diethoxyphosphoryl)‐1,2‐dihydroquinolin‐4‐ols as Horner–Wadsworth–Emmons reagents for the olefination of formaldehyde. Also, enantioselective approach to the target compounds has been evaluated using 3‐dimenthoxyphosphoryl group as a chiral auxiliary. Single X‐ray crystal analysis of (2S)‐3‐(dimenthoxyphosphoryl)‐2‐phenyl‐1‐tosyldihydroquinolin‐4‐ol revealed the presence of strong resonance‐assisted hydrogen bond (RAHB). The obtained 3‐methylidene‐2,3‐dihydroquinolin‐4(1H)‐ones were then tested for their cytotoxic activity against two leukemia cell lines NALM‐6 and HL‐60 and a breast cancer MCF‐7 cell line. All compounds showed very high cytotoxic activity with the IC50 values mostly below 1 μm in all three cancer cell lines. The selected analogs were also tested on human umbilical vein endothelial cells (HUVEC) and on human mammary gland/breast cells (MCF‐10A) to evaluate their influence on normal cells. Since one of the most serious problems in cancer chemotherapy is the development of drug resistance, the mRNA levels and activity of ABCB1 transporter considered to be the most important factor engaged in drug resistance, were evaluated in MCF‐7 cells treated with two selected analogs. Both compounds were strong ABCB1 transporter inhibitors that could prevent efflux of anticancer drugs from cancer cells.  相似文献   

9.
Benzimidazoles of both natural and synthetic sources are the key components of many bio-active compounds. Several reports have shown antifungal, antiviral, H2 receptor blocker and antitumor activities for benzimidazoles and their derivatives. In this study, we synthesized twelve bis-benzimidazole derivatives by selecting di(1H-benzo[d]imidazol-2-yl)methane as the main compound. The numbers of carbons at 2 positions of bis-benzimidazole derivatives were changed from 1 to 4, and derivatives were synthesized with methyl substitutions at 5- and/or 6- positions. The compounds were screened via in vitro plasmid superciol relaxation assays using mammalian DNA topoisomerase I and cytostatic assays were carried out against HeLa (cervix adenocarcinoma), MCF7 (breast adenocarcinoma) and A431 (skin epidermoid carcinoma) cells for selected derivatives. Our results suggest that the malonic acid derivatives of bis-benzimidazoles, namely, bis(5-methyl-1H-benzo[d]imidazol-2-yl)methane and bis(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)methane, were remarkably active compounds in interfering with DNA topoisomerase I and the former compound was also found to be cytotoxic against MCF7 and A431 cells. The inhibitory effects obtained with these derivatives are significant as these compounds can be potential sources of anticancer agents.  相似文献   

10.
Biotransformation of ent‐kaur‐16‐en‐19‐oic acid using fungus Cunninghamella echinulata resulted in two novel hydroxylated metabolites together with five known compounds. Their structures were elucidated by means of extensive NMR and HR‐ESI‐MS data analysis. The eight compounds were measured for their cytotoxicity against the human breast carcinoma (MCF‐7) and human hepatoblastoma (HepG‐2) cell lines. Seven compounds showed no cytotoxicity to the two cell lines. One compound displayed moderate cytotoxicity against HepG‐2 and MCF‐7 with the IC50 values of 12.6 and 27.1 μM, respectively.  相似文献   

11.
Antitumor activity of triterpenoid and its derivatives has attracted great attention recently. Our previous efforts led to the discovery of a series of NO‐donor betulin derivatives with potent antitumor activity. Herein, we prepared eight compounds derived from ursolic acid (UA). All the compounds were evaluated for their in vitro cytotoxicity against four human cancer cell lines (HepG‐2, MCF‐7, HT‐29 and A549). Among the compounds tested, compound 4a was found to be most active against HT‐29 (IC50=4.28 μm ). Further biological assays demonstrated that compound 4a could induce cell cycle arrest at G1 phase and apoptosis in a dose‐dependent manner. In addition, compound 4a was found to upregulate pro‐apoptotic Bax, p53 and downregulate anti‐apoptotic Bcl‐2. All these results suggested that compound 4a is a potential candidate drug for the therapy of colon cancer.  相似文献   

12.
2-Phenyl-1H-indole-3-carbaldehyde-based barbituric acid, thiobarbituric acid, thiosemicarbazide, isoniazid, and malononitrile derivatives were synthesized under photochemical conditions. The antitumor activities of the synthesized compounds were evaluated on three different human cancer cell lines representing prostate cancer cell line DU145, Dwivedi (DWD) cancer cell lines, and breast cancer cell line MCF7. All the screened compounds possessed moderate anticancer activity, and out of all the screened compounds, 5-{1[2-(4-chloro-phenyl)2-oxo-ethyl]-2-phenyl-1H-indole-3-ylmethylene}-2-thioxo-dihydro-pyrimidine-4,6-dione (2b) and 5-{1[2-(4-methoxy-phenyl)2-oxo-ethyl]-2-phenyl-1H-indole-3-ylmethylene}-2-thioxo-dihydro-pyrimidine-4,6-dione (2d) exhibited marked antitumor activity against used cell lines. Additionally, barbituric acid derivatives were selective to inhibit cell line DWD and breast cancer cell lines.  相似文献   

13.
A series of coumarin‐tagged β‐lactam triazole hybrids ( 10a – 10o ) were synthesized and tested for their cytotoxic activity against MDA‐MB‐231 (triple negative breast cancer), MCF‐7 (estrogen receptor positive breast cancer (ER+)) and A549 (human lung carcinoma) cancer cell lines including one normal cell line, HEK‐293 (human embryonic kidney). Two compounds 10b and 10d exhibited substantial cytotoxic effect against MCF‐7 cancer cell lines with IC50 values of 53.55 and 58.62 μm , respectively. More importantly, compounds 10b and 10d were non‐cytotoxic against HEK‐293 cell lines. Structure–activity relationship (SAR) studies suggested that the nitro and chloro group at the C‐3 position of phenyl ring are favorable for anticancer activity, particularly against MCF‐7 cell lines. Furthermore, antimicrobial evaluation of these compounds revealed modest inhibition of examined pathogenic strains with compounds 10c and 10i being the most promising antimicrobial agents against Pseudomonas aeruginosa and Candida albicans, respectively.  相似文献   

14.
A series of novel ethyl 2,7‐dimethyl‐4‐oxo‐3‐[(1‐phenyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]‐4,5‐dihydro‐3H‐pyrano[2,3‐d]pyrimidine‐6‐carboxylate derivatives 7a – 7m were efficiently synthesized employing click chemistry approach and evaluated for in vitro cytotoxic activity against four tumor cell lines: A549 (human lung adenocarcinoma cell line), HepG2 (human hematoma), MCF‐7 (human breast adenocarcinoma), and SKOV3 (human ovarian carcinoma cell line). Among the compounds tested, the compounds 7a , 7b , 7f , 7l , and 7m have shown potential and selective activity against human lung adenocarcinoma cell line (A549) with IC50 ranging from 0.69 to 6.74 μm . Molecular docking studies revealed that the compounds 7a , 7b , 7f , 7l , and 7m are potent inhibitors of human DNA topoisomerase‐II and also showed compliance with stranded parameters of drug likeness. The calculated binding constants, kb, from UV/VIS absorptional binding studies of 7a and 7l with CT‐DNA were 10.77 × 104, 6.48 × 104, respectively. Viscosity measurements revealed that the binding could be surface binding mainly due to groove binding. DNA cleavage study showed that 7a and 7l have the potential to cleave pBR322 plasmid DNA without any external agents.  相似文献   

15.
A series of 1,3‐bis‐chalcone derivatives ( 3a‐i, 6a‐i and 8 ) were synthesized and evaluated antimicrobial, antibiofilm and carbonic anhydrase inhibition activities. In this evaluation, 6f was found to be the most active compound showing the same effect as the positive control against Bacillus subtilis and Streptococcus pyogenes in terms of antimicrobial activity. Biofilm structures formed by microorganisms were damaged by compounds at the minimum inhibitory concentration value between 0.5% and 97%.1,3‐bis‐chalcones ( 3a‐i, 6a‐i and 8 ) showed good inhibitory action against human (h) carbonic anhydrase (CA) isoforms I and II. hCA I and II were effectively inhibited by these compounds, with K i values in the range of 94.33 ± 13.26 to 787.38 ± 82.64 nM for hCA I, and of 100.37 ± 11.41 to 801.76 ± 91.11 nM for hCA II, respectively. In contrast, acetazolamide clinically used as CA inhibitor showed K i value of 1054.38 ± 207.33 nM against hCA I, and 983.78 ± 251.08 nM against hCA II, respectively.  相似文献   

16.
In our efforts to discover novel multi‐target agents having better antitumor activities than celecoxib, 21 new aryl‐substituted pyrazole derivatives possessing cis‐diphenylethylene scaffold were mostly synthesized by a one‐pot approach to ethyl 1,4,5‐triaryl‐1H‐pyrazole‐3‐carboxylates via an improved Claisen condensation – Knorr reaction sequence. The cytotoxic effects of these compounds against three human cancer cell lines HT‐29, Hep‐G2, MCF‐7 as well as their inhibition of NO production were studied. Results showed that incorporation of the important pharmacophoric groups of two original molecules celecoxib and combretastatin A‐4 in a single molecule plays an important role in determining a better biological activities of the new coxib‐hybrided compounds.  相似文献   

17.
Structural simplification and modification of natural products are always very important resources to antitumor drugs. By introducing various aminomethyl groups and amide groups into the phenanthrene ring of tylophorine, a novel series of tylophorine derivatives have been designed and synthesized, and their antiproliferative activities against MCF‐7, A549 and HepG‐2 cells have been evaluated, too. The results indicated that most of the prepared compounds exhibited good antitumor activities. Especially, one compound with an {ethyl[2‐(morpholin‐4‐yl)ethyl]amino}methyl group at the side chain exhibited the most significant cytotoxic effects.  相似文献   

18.
A series of novel phenylurea containing 2‐benzoylindan‐1‐one derivatives 3a  –  3j were synthesized from the reaction of phenylurea‐substituted acetophenones 1a  –  1j with phthalaldehyde 2 under mild reaction conditions in good yields. All synthesized compounds were characterized by spectroscopic methods. The obtained compounds ( 3a  –  3j ) were evaluated for anticancer activity against HeLa and C6 cell lines. Antiproliferative activity was determined by the BrdU proliferation ELISA assay, 3f and 3g were found to be most active compounds. The compounds were also screened for antimicrobial activity and all compounds showed remarkable activity against used microorganisms.  相似文献   

19.
Newcastle disease virus (NDV) is endowed with the oncolytic ability to kill tumor cells, while rarely causing side effects in normal cells. Both estrogen receptor α (ERα) and the G protein estrogen receptor (GPER) modulate multiple biological activities in response to estrogen, including apoptosis in breast cancer (BC) cells. Here, we investigated whether NDV‐D90, a novel strain isolated from natural sources in China, promoted apoptosis by modulating the expression of ERα or the GPER in BC cells exposed to 17β‐estradiol (E2). We found that NDV‐D90 significantly killed the tumor cell lines MCF‐7 and BT549 in a time‐ and dose‐dependent manner. We also found that NDV‐D90 exerted its effects on the two cell lines mainly by inducing apoptosis but not necrosis. NDV‐D90 induced apoptosis via the intrinsic and extrinsic signaling pathways in MCF‐7 cells (ER‐positive cells) during E2 exposure not only by disrupting the E2/ERα axis and enhancing GPER expression but also by modulating the expression of several apoptosis‐related proteins through ERα‐and GPER‐independent processes. NDV‐D90 promoted apoptosis via the intrinsic signaling pathway in BT549 cells (ER‐negative cells), possibly by impairing E2‐mediated GPER expression. Furthermore, NDV‐D90 exerted its antitumor effects in vivo by inducing apoptosis. Overall, these results demonstrated that NDV‐D90 promotes apoptosis by differentially modulating the expression of ERα and the GPER in ER‐positive and negative BC cells exposed to estrogen, respectively, and can be utilized as an effective approach to treating BC.  相似文献   

20.
Gambogic acid (GA), a natural product, was identified as a promising antitumor agent. To further explore the structure? activity relationship of GA and discover novel GA derivatives as antitumor agents, 19 novel GA derivatives modified at C(34) were synthesized and evaluated against A549, BGC‐823, U251, HepG2, and MB‐231 cancer cell lines by cellular assays. Among them, 15 compounds were found to be more potent than GA against some cancer cell lines. Notably, compound 3 possessed potent inhibitory activities against five cell lines with IC50 values ranging between 0.24 and 1.09 μM . Compounds 9 and 18 were seven to eightfold more active than GA against A549 cell line. Chemical modification at C(34) of GA by introducing of hydrophilic aliphatic amines resulted in increased activity and improved drug‐like properties. These findings will enhance our understanding of the SAR of GA and can lead to the discovery of novel GA derivatives as potential antitumor agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号