首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periodontal ligament fibroblasts (PLF) sense and respond to mechanical stimuli and participate in alveolar bone resorption during orthodontic treatments. This study examined how PLF influence osteoclastogenesis from bone marrow-derived macrophages (BMM) after application of tension or compression force. We also investigated whether lymphocytes could be a primary stimulator of osteoclastic activation during alveolar bone remodeling. We found that mechanical forces inhibited osteoclastic differentiation from BMM in co-cultures with PLF, with PLF producing predominantly osteoprotegerin (OPG) rather than receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL). In particular, PLF increased the expression of tumor necrosis factor (TNF)-α in response to compression. Additional experiments showed the presence of CD4- and B220-positive cells with a subsequent increase in tartrate-resistant acid phosphatase (TRAP)-positive cells and RANKL expression only at the compression side of the force-subjected periodontal tissues. Exogenous TNF-α increased the number of TRAP-positive cells and pit formation in the co-cultures of BMM with Jurkat, but not with BJAB cells and this effect was almost completely inhibited by antibodies to TNF-α or TNF receptor. Collectively, the current findings suggest that PLF secrete relatively higher levels of TNF-α at the compression side than at the tension side and this imbalance leads to RANKL expression by activating CD4+ T cells, thereby facilitating bone resorption during orthodontic tooth movement.  相似文献   

2.
3.
4.
5.
We previously showed that mature hepatocytes could transdifferentiate into bile ductular cells when placed in a collagen‐rich microenvironment. To explore the mechanism of transdifferentiation, we examined whether inflammatory cytokines affected the phenotype of hepatocytes in a three‐dimensional culture system. Spheroidal aggregates of rat hepatocytes were embedded within a type I collagen gel matrix and cultured in the presence of various cytokines. In the control, hepatocytes gradually lost expression of albumin, tyrosine aminotransferase, and hepatocyte nuclear factor (HNF)‐4α, while aberrantly expressed bile ductular markers, including cytokeratin 19 (CK 19) and spermatogenic immunoglobulin superfamily (SgIGSF). Among the cytokines examined, tumor necrosis factor (TNF)‐α inhibited expression of albumin and HNF‐4α, both at mRNA and protein levels. After culturing for 2 weeks with TNF‐α, hepatocytic spheroids were transformed into extensively branching tubular structures composed of CK 19‐ and SgIGSF‐positive small cuboidal cells. These cells responded to secretin with an increase in secretion and expressed functional bile duct markers. TNF‐α also induced the phosphorylation of Jun N‐terminal kinase (JNK) and c‐Jun, and the morphogenesis was inhibited by SP600125, a specific JNK inhibitor. Furthermore, in chronic rat liver injury induced by CCl4, ductular reaction in the centrilobular area demonstrated strong nuclear staining of phosphorylated c‐Jun. Our results demonstrate that TNF‐α promotes the ductular transdifferentiation of hepatocytes and suggest a role of TNF‐α in the pathogenesis of ductular reaction. J. Cell. Biochem. 114: 831–843, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
Tumor hypoxia was first described in the 1950s by radiation oncologists as a frequent cause of failure to radiotherapy in solid tumors. Today, it is evident that tumor hypoxia is a common feature of many cancers and the master regulator of hypoxia, hypoxia‐inducible factor‐1 (HIF‐1), regulates multiple aspects of tumorigenesis, including angiogenesis, proliferation, metabolism, metastasis, differentiation, and response to radiation therapy. Although the tumor hypoxia response mechanism leads to a multitude of downstream effects, it is angiogenesis that is most crucial and also most susceptible to molecular manipulation. The delineation of molecular mechanisms of angiogenesis has revealed a critical role for HIF‐1 in the regulation of angiogenic growth factors. In this article, we review what has been described about HIF‐1: its structure, its regulation, and its implication for cancer therapy and we focus on its role in angiogenesis and cancer. J. Cell. Biochem. 114: 967–974, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Growth differentiation factor‐15 (GDF‐15) and the CCN family member, connective tissue growth factor (CCN2), are associated with cardiac disease, inflammation, and cancer. The precise role and signaling mechanism for these factors in normal and diseased tissues remains elusive. Here we demonstrate an interaction between GDF‐15 and CCN2 using yeast two‐hybrid assays and have mapped the domain of interaction to the von Willebrand factor type C domain of CCN2. Biochemical pull down assays using secreted GDF‐15 and His‐tagged CCN2 produced in PC‐3 prostate cancer cells confirmed a direct interaction between these proteins. To investigate the functional consequences of this interaction, in vitro angiogenesis assays were performed. We demonstrate that GDF‐15 blocks CCN2‐mediated tube formation in human umbilical vein endothelial (HUVEC) cells. To examine the molecular mechanism whereby GDF‐15 inhibits CCN2‐mediated angiogenesis, activation of αVβ3 integrins and focal adhesion kinase (FAK) was examined. CCN2‐mediated FAK activation was inhibited by GDF‐15 and was accompanied by a decrease in αVβ3 integrin clustering in HUVEC cells. These results demonstrate, for the first time, a novel signaling pathway for GDF‐15 through interaction with the matricellular signaling molecule CCN2. Furthermore, antagonism of CCN2 mediated angiogenesis by GDF‐15 may provide insight into the functional role of GDF‐15 in disease states. J. Cell. Biochem. 114: 1424–1433, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
11.
12.
13.
Mesenchymal stem cells (MSCs) favor cancer growth by facilitating immunosuppression status in tumor microenvironment. However, the function and mechanism of MSCs in initiating and developing prostate cancer remains to be fully understood. In this study, we first found that MSCs promoted prostate cancer (PCa) tumor growth in vivo and cell proliferation in vitro by using PCs cell strain RM‐1. Both exogenous and endogenous MSCs could be recruited into the tumor microenvironment by using bone‐marrow transplantation model. We further demonstrated that PDGF‐BB produced by RM‐1 cell promoted MSCs proliferation in vivo and in vitro, which was abrogated by Si‐RNA specific to PDGF‐BB. And inflammatory cytokines, such as interferon gamma, tumor necrosis factor alpha, and anti‐inflammatory cytokine transformation growth factor alpha, further increased the ability of RM‐1 to produce PDGF‐BB. Overall, PCa cells produced PDGF‐BB favors the proliferation of MSCs, which may elicit immunosuppressive function and enable PCa cells to escape from the immunity surveillance in tumor inflammatory microenvironment. J. Cell. Biochem. 114: 1510–1518, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号