首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stem cells (MSCs) are an ideal adult stem cell with capacity for self‐renewal and differentiation with an extensive tissue distribution. The present study evaluates the therapeutic effects of bone marrow mesenchymal stem cells (BM‐MSCs) or adipose‐derived mesenchymal stem cells (AD‐MSCs) against the development of methotrexate (MTX)‐induced cardiac fibrosis versus dexamethasone (DEX). Rats were allocated into five groups; group 1, received normal saline orally; group 2, received MTX (14 mg/kg/week for 2 weeks); groups 3 and 4, treated once with 2 × 10 6 cells of MTX + BM‐MSCs and MTX + AD‐MSCs, respectively; and group 5, MTX + DEX (0.5 mg/kg, for 7 days, P.O.). MTX induced cardiac fibrosis as marked changes in oxidative biomarkers and elevation of triglyceride, cholesterol, aspartate aminotransferase, gamma‐glutamyl transferase, creatine kinase, and caspase‐3, as well as deposited collagen. These injurious effects were antagonized after treatment with MSCs. So, MSCs possessed antioxidant, antiapoptotic, as well antifibrotic effects, which will perhaps initiate them as notable prospective for the treatment of cardiac fibrosis.  相似文献   

2.
Mesenchymal stem cells (MSCs) have been shown to improve the outcome of acute renal injury models; but whether MSCs can delay renal failure in chronic kidney disease (CKD) remains unclear. In the present study, the were cultured in media containing various concentrations of basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate to investigate whether hepatocyte growth factor (HGF) secretion could be increased by the stimulation of these growth factors. Then, TGF‐β1‐treated renal interstitial fibroblast (NRK‐49F), renal proximal tubular cells (NRK‐52E) and podocytes were co‐cultured with conditioned MSCs in the absence or presence of ascorbic acid 2‐phosphate to quantify the protective effects of conditioned MSCs on renal cells. Moreover, male Sprague‐Dawley rats were treated with 1 × 106 conditioned MSCs immediately after 5/6 nephrectomy and every other week through the tail vein for 14 weeks. It was found that basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate promoted HGF secretion in MSCs. Besides, conditioned MSCs were found to be protective against TGF‐β1 induced epithelial‐to‐mesenchymal transition of NRK‐52E and activation of NRK‐49F cells. Furthermore, conditioned MSCs protected podocytes from TGF‐β1‐induced loss of synaptopodin, fibronectin induction, cell death and apoptosis. Rats transplanted with conditioned human MSCs had a significantly increase in creatinine clearance rate, decrease in glomerulosclerosis, interstitial fibrosis and increase in CD4+CD25+Foxp3+ regulatory T cells counts in splenocytes. Together, our studies indicated that conditioned MSCs preserve renal function by their anti‐fibrotic and anti‐inflammatory effects. Transplantation of conditioned MSCs may be useful in treating CKD.  相似文献   

3.
The present study examined the therapeutic effects of bone marrow mesenchymal stem cells (BM‐MSCs) and adipose‐derived mesenchymal stem cells (AD‐MSCs) in methotrexate (MTX)‐induced pulmonary fibrosis in rats as compared with dexamethasone (Dex). MTX (14 mg/kg, as a single dose/week for 2 weeks, p.o.) induced lung fibrosis as marked by elevation of relative lung weight, malondialdehyde, nitrite/nitrate, interleukin‐4, transforming growth factor‐β1, deposited collagen, as well as increased expression of Bax along with the reduction of reduced glutathione content and superoxide dismutase activity. These deleterious effects were antagonized after treatment either with BM‐MSCs or AD‐MSCs (2 × 106 cells/rat) 2 weeks after MTX to even a better extent than Dex (0.5 mg/kg/ for 7 days, p.o.). In conclusion, BM‐MSC and AD‐MSCs possessed antioxidant, antiapoptotic, as well as antifibrotic effects, which will probably introduce them as remarkable candidates for the treatment of pulmonary fibrosis.  相似文献   

4.
Two different repair mechanisms of mesenchymal stem cells (MSCs) are suggested to participate in the repair of acute lung injury (ALI): (i) Cell engraftment mechanism, (ii) Paracrine/endocrine mechanism. However, the exact roles they play in the repair remain unclear. The aim of the study was to evaluate the role of paracrine/endocrine mechanism using a novel intrapleural delivery method of MSCs. Either 1 × 106 MSCs in 300 μl of PBS or 300 μl PBS alone were intrapleurally injected into rats with endotoxin‐induced ALI. On days 1, 3 or 7 after injections, samples of lung tissues and bronchoalveolar lavage fluid (BALF) were collected from each rat for assessment of lung injury, biochemical analysis and histology. The distribution of MSCs was also traced by labelling the cells with 4′,6‐diamidino‐2‐phenylindole dihydrochloride (DAPI). MSCs intrapleural injection significantly improved LPS‐induced lung histopathology compared with PBS‐treated group at day 3. There was also a significant decrease in total cell counts and protein concentration in BALF at day 7 in the MSCs ‐treated rats compared to PBS control group. Tracking the DAPI‐marked MSCs showed that there were no exotic MSCs in the lung parenchyma. MSCs administration resulted in a down‐regulation of pro‐inflammatory response to endotoxin by reducing TNF‐α both in the BALF and in the lung, while up‐regulating the anti‐inflammatory cytokine IL‐10 in the lung. In conclusion, treatment with intrapleural MSCs administration markedly attenuates the severity of endotoxin‐induced ALI. This role is mediated by paracrine/endocrine repair mechanism of MSCs rather than by the cell engraftment mechanism.  相似文献   

5.
Three‐dimensional (3D) cell culture has been reported to increase the therapeutic potentials of mesenchymal stem cells (MSCs). In this study, we aimed to investigate the therapeutic effects of 3D spheroids of human adipose‐derived MSCs for acute kidney injury (AKI). In vitro studies indicated that 3D spheroids of MSCs produced higher levels of extracellular matrix proteins (including collagen I, fibronectin and laminin), and exhibited stronger anti‐apoptotic and anti‐oxidative capacities than two‐dimensional (2D) cultured cells. Furthermore, 3D culture increased the paracrine secretion of cytokines by MSCs, including angiogenic factors (VEGF and basic fibroblast growth factor), anti‐apoptotic factors (epidermal growth factor and hepatocyte growth factor), the anti‐oxidative factor insulin‐like growth factor and the anti‐inflammatory protein tumour necrosis factor‐alpha stimulated gene/protein 6. Consistent with in vitro experiments, 3D spheroids of MSCs showed enhanced survival and paracrine effects in vivo. More importantly, when injected into the kidney of model rats with ischemia‐reperfusion (I/R)‐induced AKI, 3D spheroids were more beneficial in protecting the I/R kidney against apoptosis, reducing tissue damage, promoting vascularization and ameliorating renal function compared with 2D cultured cells. Therefore, the 3D culture strategy improved the therapeutic effects of MSCs, and might be promising for AKI treatment.  相似文献   

6.
Translational studies have explored the therapeutic effects of stem cells, raising hopes for the treatment of numerous diseases. Here, we evaluated the therapeutic effect of chorionic plate‐derived mesenchymal stem cells (CP‐MSCs) isolated from human placenta and transplanted into rats with carbon tetrachloride (CCl4)‐injured livers. CP‐MSCs were analyzed for hepatocyte‐specific gene expression, indocyanine green (ICG) uptake, glycogen storage, and urea production following hepatogenic differentiation. PKH26‐labeled CP‐MSCs were directly transplanted into the livers of rats that had been exposed to CCl4 (1.6 g/kg, twice per week for 9 weeks). Blood and liver tissue were analyzed at 1, 2, and 3 weeks post‐transplantation. The expression of type I collagen (Col I) and matrix metalloproteinases (MMPs) was analyzed in rat T‐HSC/Cl‐6 hepatic stellate cells co‐cultured with CP‐MSCs following exposure to TGF‐β. The expression levels of α‐smooth muscle actin (α‐SMA) and Col I were lower in transplanted (TP) rats than in non‐transplanted (Non‐TP) animals (P < 0.05), whereas the expression levels of albumin and MMP‐9 were increased. TP rats exhibited significantly higher uptake/excretion of ICG than non‐TP rats (P < 0.005). In addition, collagen synthesis in T‐HSC/Cl‐6 cells exposed to TGF‐β was decreased by co‐culture with CP‐MSCs, which triggered the activation of MMP‐2 and MMP‐9. These results contribute to our understanding of the potential pathophysiological roles of CP‐MSCs, including anti‐fibrotic effects in liver disease, and provide a foundation for the development of new cell therapy‐based strategies for the treatment of difficult‐to‐treat liver diseases. J. Cell. Biochem. 111: 1453–1463, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The aim of this study was to explore the curative effect of differentiated human umbilical cord–derived mesenchymal stem cells (hUC‐MSCs) transplantation on rat of advanced Parkinson disease (PD) model. Human umbilical cord–derived mesenchymal stem cells were cultured and induced differentiation in vitro. The PD rats were established and allocated randomly into 2 groups: differentiated hUC‐MSCs groups and physiological saline groups (the control group). Rotation test and immunofluorescence double staining were done. The result showed that hUC‐MSCs could differentiate into mature dopamine neurons. Frequency of rotation was significantly less in differentiated hUC‐MSCs groups than in normal saline group. After we transplanted these cells into the unilateral lesioned substantia nigra induced by striatal injection of 6‐hydroxydopamine and performed in the medial forebrain bundle and ventral tegmental area, nigral tyrosine hydroxylase–positive cells were observed and survival of at least 2 months. In addition, transplantation of hUC‐MSCs could make an obviously therapeutic effect on PD rats.  相似文献   

8.
Colon cancer is one of the most common causes of deaths by cancer worldwide. Stem cells have immunosuppressive properties that promote tumor targeting and circumvent obstacles currently in gene therapy. Bone marrow stem cells are believed to have anticancer potential. The transplantation of mesenchymal stem cells (MSCs), a type of bone marrow stem cells, has been considered a potential therapy for patients with solid tumors due to their capability to enhance the immune response; MSC transplantation has received renewed interest in recent years. The present study aimed to evaluate the antiapoptotic effects of the MSCs on 1,2-dimethylhydrazine (DMH)-induced inflammation in the rat model of colorectal cancer. The rats were randomly allocated into four groups: control, treated with MSCs, induced by DMH, and induced by DMH and treated with MSCs. The MSCs were intra-rectally injected, and DMH was subcutaneously injected at 20 mg/kg body weight once a week for 15 weeks. The administration of MSCs into rats starting from day 0 of the DMH injection was found to enhance the histopathological picture. The MSC treatment resulted in fewer inflammatory cells than in the DMH group. Therefore, our findings suggest that BMCs have antitumor effects by modulating the cellular redox status and down-regulating the pro-inflammatory genes. Thus, BMCs may provide therapeutic value for colon cancer treatment.  相似文献   

9.
The poor survival of stem cells seriously limits their therapeutic efficacy for myocardial infarction (MI). Mineralocorticoid receptor (MR) activation plays an important role in the pathogenesis of multiple cardiovascular diseases. Here, we examined whether MR silencing in bone marrow derived mesenchymal stem cells (MSCs) could improve MSCs’ survival and enhance their cardioprotective effects in MI. MSCs from male Sprague‐Dawley rats were transfected with adenoviral small interfering RNA to silence MR (siRNA‐MR). MR silencing decreased hypoxia‐induced MSCs’ apoptosis, as demonstrated by Annexin V/7‐AAD staining. The mechanisms contributing to the beneficial effects of MR depletion were associated with inhibiting intracellular reactive oxygen species production and increased Bcl‐2/Bax ratio. In vivo study, 1 × 106 of MSCs with or without siRNA‐MR were injected into rat hearts immediately after MI. Depletion of MR could improve the MSCs’ survival significantly in infarcted myocardium, associated with more cardiac function improvement and smaller infarct size. Capillary density were also significantly higher in siRNA group with increased expression of vascular endothelial growth factor. Our study demonstrated that silencing MR promoted MSCs’ survival and repair efficacy in ischaemic hearts. MR might be a potential target for enhancing the efficacy of cell therapy in ischaemic heart disease.  相似文献   

10.
Multiple sclerosis (MS) is a chronic autoimmune demyelinating neurodegenerative central nervous system disorder. The aim of the present study was to investigate the prophylactic effect exerted by the one‐time intraperitoneal injection of mesenchymal stem cells (MSCs) 1 × 106 and 14‐day intraperitoneal injection of methylprednisolone (MP) 40 mg/kg in an experimental autoimmune encephalomyelitis (EAE). EAE was induced by intradermal injection of rat spinal cord homogenate with complete Freund's adjuvant in Swiss mice. Results of MSCs and MP‐treated mice showed a significantly milder disease and fewer clinical scores compared to control mice. They suppressed tumor necrosis factor‐alpha and myeloperoxidase and increased interleukin 10, whereas thiobarbituric acid reactive substances and nitric oxide brain contents were reduced to comparable levels between treatment groups. Brain content of GSH was significantly higher in MSCs‐treated mice than control mice. It is evident that MSCs have relevant prophylactic effect in an animal model of MS and might represent a valuable tool for stem cell based therapy in MS.  相似文献   

11.
Immune-modulatory properties of adipose tissue-derived mesenchymal stem/stromal cells (MSCs) might be susceptible to metabolic disturbances. We hypothesized that the immune-modulatory function of MSCs might be blunted in obese human subjects. MSCs were collected from abdominal subcutaneous fat of obese and lean subjects during bariatric or kidney donation surgeries, respectively. MSCs were co-cultured in vitro for 24 h with M1 macrophages, which were determined as M1or M2 phenotypes by flow cytometry, and cytokines measured in conditioned media. In vivo, lean or obese MSCs (5 × 105), or PBS, were injected into mice two weeks after unilateral renal artery stenosis (RAS) or sham surgeries (n = 6 each). Fourteen days later, kidneys were harvested and stained with M1 or M2 markers. Lean MSCs decreased macrophages M1 marker intensity, which remained elevated in macrophages co-cultured with obese MSCs. TNF-α levels were four-fold higher in conditioned media collected from obese than from lean MSCs. RAS mouse kidneys were shrunk and showed increased M1 macrophage numbers and inflammatory cytokine expression compared with normal kidneys. Lean MSCs decreased M1 macrophages, M1/M2 ratio and inflammation in RAS kidneys, whereas obese MSCs did not. MSCs isolated from lean human subjects decrease inflammatory M1 macrophages both in vivo and in vitro, an immune-modulatory function which is blunted in MSCs isolated from obese subjects.  相似文献   

12.
13.
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor‐β super family. It has multiple effects on development, physiology and diseases. However, the role of GDF11 in the development of mesenchymal stem cells (MSCs) is not clear. To explore the effects of GDF11 on the differentiation and pro‐angiogenic activities of MSCs, mouse bone marrow–derived MSCs were engineered to overexpress GDF11 (MSCGDF11) and their capacity for differentiation and paracrine actions were examined both in vitro and in vivo. Expression of endothelial markers CD31 and VEGFR2 at the levels of both mRNA and protein was significantly higher in MSCGDF11 than control MSCs (MSCVector) during differentiation. More tube formation was observed in MSCGDF11 as compared with controls. In an in vivo angiogenesis assay with Matrigel plug, MSCGDF11 showed more differentiation into CD31+ endothelial‐like cells and better pro‐angiogenic activity as compared with MSCVector. Mechanistically, the enhanced differentiation by GDF11 involved activation of extracellular‐signal‐related kinase (ERK) and eukaryotic translation initiation factor 4E (EIF4E). Inhibition of either TGF‐β receptor or ERK diminished the effect of GDF11 on MSC differentiation. In summary, our study unveils the function of GDF11 in the pro‐angiogenic activities of MSCs by enhancing endothelial differentiation via the TGFβ‐R/ERK/EIF4E pathway.  相似文献   

14.
The methotrexate (MTX) is an anti‐folate used to treat cancer and some inflammatory diseases. The efficacy of MTX is often limited by its severe toxicity. The present study was undertaken to determine whether Grape seed (Cabernet Sauvignon) extract (GSE) could ameliorate the MTX‐induced oxidative injury and the effect on adenosine deaminase activity (ADA) in rats. The rats were pretreated with 50 mg/kg of GSE, i.p., prior to MTX administration (10 mg/kg, i.p.) with a second dose given 4 h and a third dose 16 h after MTX administration. Biochemical parameters were investigated 48 h after the last MTX administration. The administration of MTX increased thiobarbituric acid reactive species (TBARS) levels in hippocampus, kidney and liver, whereas induced a significant decreased in the ADA activity in the cerebral cortex, kidney and liver tissues. MTX administration significantly increased the activity of ALT(alanine aminotransferase) and urea levels and decreased uric acid levels in the serum. Urinary uric acid levels decreased in the MTX group when compared to those of the control group. The GSE along with MTX‐administration significantly reversed these parameters toward to near normal. These results indicated that GSE could reduce hepatic and nephritic damage induced by MTX‐treatment in young rats therefore having free radical scavenging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In our previous study, we have confirmed that in phosgene‐induced acute lung injury (ALI) rats, mesenchymal stem cells (MSCs) can treat the disease. Moreover, heat shock protein 70 (Hsp70) can be used as a protective protein, and Hsp70 upregulated drastically when exposed to stressful conditions. We aimed to assess that MSCs overexpressed Hsp70 could enhance the capacity of MSCs and have a good therapeutic effect on phosgene‐induced ALI. We transduced MSCs with Hsp70 and then we tested the function of the transduced MSCs. Sprague Dawley rats inhaled phosgene in a closed container for 5 minutes. The transduced MSCs and MSCs were administered via the trachea immediately. Rats in each group were killed at 6, 24, and 48 hours after exposure. Compared to MSCs, MSCs overexpressed Hsp70 enhanced MSCs viability, antiapoptotic ability, and migration ability, and these effects disappeared when using the phosphatidylinositol 3?kinase/protein kinase B (PI3K/AKT) pathway inhibitor. Furthermore, the results of pathological alterations improved. The lung wet‐to‐dry ratio declined. The lung injury index total protein content and total cells in bronchoalveolar lavage fluid (BALF) also declined. The level of tumor necrosis factor α declined and the level of interleukin‐10 improved in BALF and serum. MSCs overexpressed Hsp70 can enhance the capacity and efficacy of MSCs in the treatment of phosgene‐induced ALI and may be mediated through the PI3k/AKT signaling pathway. This article introduces a new approach to stem cell therapy for improving the efficacy of phosgene‐induced ALI.  相似文献   

16.
MiRNAs contribute greatly to epithelial to mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs), which is a crucial step in peritoneal fibrosis (PF). In this study, we tried to profile whether miRNA expression differences exist after human umbilical cord mesenchymal stem cells (hUCMSCs) treatment in PF rats and investigate the possible role of miR‐153‐3p involved in anti‐EMT process. We randomly assigned 34 rats into three groups: control group (Group Control), MGO‐induced PF rats (Group MGO) and hUCMSCs‐treated rats (Group MGO + hUCMSCs). MiRNA microarrays and real‐time PCR analyses were conducted in three groups. α‐SMA, Snail1 and E‐cadherin expression were detected by Western blot. Luciferase reporter assays were used to detect the effects of miR‐153‐3p overexpression on Snai1 in rat peritoneal mesothelial cells (RPMCs). We identified differentially expressed miRNAs related to EMT, in which miR‐153‐3p demonstrated the greatest increase in Group MGO + hUCMSCs. Transient cotransfection of miR‐153‐3p mimics with luciferase expression plasmids resulted in a significant repression of Snai1 3′‐untranslated region luciferase activity in RPMCs. These studies suggest that miR‐153‐3p is a critical molecule in anti‐EMT effects of hUCMSCs in MGO‐induced PF rats. MiR‐153‐3p might exert its beneficial effect through directly targeting Snai1.  相似文献   

17.
The efficacy of methotrexate (MTX), a commonly used chemotherapeutic drug, is limited by intestinal injury. As the mechanism of MTX‐induced small intestinal injury is not clear, there is no definitive treatment for MTX‐induced gastrointestinal injury. The present study investigates the role of mitochondrial apoptotic pathway in MTX‐induced small intestinal injury and examines whether aminoguanidine is effective in preventing the damage. Eight Wistar rats were administered 3 consecutive i.p. injections of 7 mg/kg body wt. MTX. Some rats were pretreated with 30 mg or 50 mg/kg body wt. of aminoguanidine (n = 6 in each group). Protein expressions of cytochrome c, caspases 3 and 9, and PARP‐1 were determined in the small intestines by immunohistochemistry and western blot. Mitochondrial pathway of apoptosis was activated in the small intestines of MTX‐treated rats as evidenced by intense immunostaining for cyt c, caspases 9 and 3, and PARP‐1 and mitochondrial release of cyt c, activation of caspases, and PARP‐1 cleavage by Western blot. Immunofluorescence revealed increased nuclear localization of PARP‐1. Aminoguanidine pretreatment ameliorated MTX‐induced small intestinal injury in dose‐dependent manner and inactivated the mitochondrial apoptotic pathway. Aminoguanidine may possess beneficial intestinal protective effects as an adjuvant co‐drug against MTX intestinal toxicity during cancer chemotherapy. As the mechanism of MTX‐induced small intestinal injury is not clear, there is no definitive treatment for MTX‐induced gastrointestinal injury. The results of the present study show that the mitochondrial pathway of apoptosis plays a role in MTX‐induced small intestinal injury as evidenced by cytochrome c release, activation of caspases 9 and 3, PARP‐1 cleavage, and DNA fragmentation. Aminoguanidine (AG) pretreatment attenuates the severity of small‐intestinal injury induced in rats by MTX treatment. The mechanisms of action of AG involve inhibition of iNOS, and mitochondrial pathway of apoptosis. It is suggested that aminoguanidine may possess beneficial intestinal protective effects as an adjuvant co‐drug against MTX intestinal toxicity during cancer chemotherapy.  相似文献   

18.
The aim of this study was to investigate how mesenchymal stromal cells (MSCs) modulate metabolic balance and attenuate hepatic lipotoxicity in the context of non-alcoholic fatty liver disease (NAFLD). In vivo, male SD rats were fed with high-fat diet (HFD) to develop NAFLD; then, they were treated twice by intravenous injections of rat bone marrow MSCs. In vitro, HepG2 cells were cocultured with MSCs by transwell and exposed to palmitic acid (PA) for 24 hours. The endoplasmic reticulum (ER) stressor thapsigargin and sarco/ER Ca2+-ATPase (SERCA2)–specific siRNA were used to explore the regulation of ER stress by MSCs. We found that MSC administration improved hepatic steatosis, restored systemic hepatic lipid and glucose homeostasis, and inhibited hepatic ER stress in HFD-fed rats. In hepatocytes, MSCs effectively alleviated the cellular lipotoxicity. Particularly, MSCs remarkably ameliorated the ER stress and intracellular calcium homeostasis induced by either PA or thapsigargin in HepG2 cells. Additionally, long-term HFD or PA stimulation would activate pyroptosis in hepatocytes, which may contribute to the cell death and liver dysfunction during the process of NAFLD, and MSC treatment effectively ameliorates these deleterious effects. SERCA2 silencing obviously abolished the ability of MSCs against the PA-induced lipotoxicity. Conclusively, our study demonstrated that MSCs were able to ameliorate liver lipotoxicity and metabolic disturbance in the context of NAFLD, in which the regulation of ER stress and the calcium homeostasis via SERCA has played a key role.  相似文献   

19.
20.
The effect of dysfunctional mitochondria in several cell pathologies has been reported in renal diseases, including diabetic nephropathy and acute kidney injury. Previous studies have reported that mitochondrial transplantation provided surprising results in myocardial and liver ischemia, as well as in Parkinson's disease. We aimed to investigate the beneficial effects of isolated mitochondria transplantation from mesenchymal stem cells (MSCs) in vivo, to mitigate renal damage that arises from doxorubicin‐mediated nephrotoxicity and its action mechanism. In this study, a kidney model of doxorubicin‐mediated nephrotoxicity was used and isolated mitochondria from MSCs were transferred to the renal cortex of rats. The findings showed that the rate of isolated mitochondria from MSCs maintains sufficient membrane integrity, and was associated with a beneficial renal therapeutic effect. Following doxorubicin‐mediated renal injury, isolated mitochondria or vehicle infused into the renal cortex and rats were monitored for five days. This study found that mitochondrial transplantation decreased cellular oxidative stress and promoted regeneration of tubular cells after renal injury (P < .001, P = .009). Moreover, mitochondrial transplantation reduced protein accumulation of tubular cells and reversed renal deficits (P = .01, P < .001). Mitochondrial transplantation increased Bcl‐2 levels, and caspase‐3 levels decreased in injured renal cells (P < .015, P < .001). Our results provide a direct link between mitochondria dysfunction and doxorubicin‐mediated nephrotoxicity and suggest a therapeutic effect of transferring isolated mitochondria obtained from MSCs against renal injury. To our knowledge, this study is the first study in the literature that showed good therapeutic effects of mitochondrial transplantation in a nephrotoxicity model, which is under‐researched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号