首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
热激蛋白90(heat shock protein90,Hsp90)作为分子伴侣在调节细胞生长、分化、凋亡等方面发挥着重要的作用。Hsp90抑制剂能与Hsp90结合,使其功能丧失,造成细胞的多种生理活动缺陷,在Hsp90功能研究和癌症治疗方面具有潜在的价值。综述了不同来源的Hsp90抑制剂及其作用机制,同时对新型Hsp90抑制剂的来源进行了探讨。  相似文献   

2.
植物热激蛋白90的结构和功能   总被引:2,自引:0,他引:2  
文章从结构和功能两个方面介绍植物热激蛋白90的研究进展。  相似文献   

3.
Hsp90 and tubulin are among the most abundant proteins in the cytosol of eukaryotic cells. Although Hsp90 plays key roles in maintaining its client proteins in their active state, tubulin is essential for fundamental processes such as cell morphogenesis and division. Several studies have suggested a possible connection between Hsp90 and the microtubule cytoskeleton. Because tubulin is a labile protein in its soluble form, we investigated whether Hsp90 protects it against thermal denaturation. Both proteins were purified from porcine brain, and their interaction was characterized in vitro by using spectrophotometry, sedimentation assays, video-enhanced differential interference contrast light microscopy, and native polyacrylamide gel electrophoresis. Our results show that Hsp90 protects tubulin against thermal denaturation and keeps it in a state compatible with microtubule polymerization. We demonstrate that Hsp90 cannot resolve tubulin aggregates but that it likely binds early unfolding intermediates, preventing their aggregation. Protection was maximal at a stoichiometry of two molecules of Hsp90 for one of tubulin. This protection does not require ATP binding and hydrolysis by Hsp90, but it is counteracted by geldanamycin, a specific inhibitor of Hsp90.  相似文献   

4.
5.
热激蛋白Hsp90是一类在进化中形成的高度保守的且可参与多种细胞功能的特异分子伴侣。TPR蛋白通常存在于Hsp90的多蛋白质复合物中,它对Hsp90的功能的多样性起着至关重要的作用,同时Hsp90可能为TPR蛋白提供“泊位”,允许不同的TPR蛋白在Hsp90分子伴侣底物附近有序而特异结合,从而使Hsp90在细胞内环境中以特定的方式完成其各种细胞功能。了解TPR蛋白与Hsp90的相互作用机制为阐明细胞内Hsp90的功能多样性和特异性奠定了基础。  相似文献   

6.
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.  相似文献   

7.
The molecular chaperone heat shock protein 90 (Hsp90) is an essential protein required for the activity and stability of multiple proteins termed clients. Hsp90 cooperates with a set of co-chaperone proteins that modulate Hsp90 activity and/or target clients to Hsp90 for folding. Many of the Hsp90 co-chaperones, including Cpr6 and Cpr7, contain tetratricopeptide repeat (TPR) domains that bind a common acceptor site at the carboxyl terminus of Hsp90. We found that Cpr6 and Hsp90 interacted with Ura2, a protein critical for pyrimidine biosynthesis. Mutation or inhibition of Hsp90 resulted in decreased accumulation of Ura2, indicating it is an Hsp90 client. Cpr6 interacted with Ura2 in the absence of stable Cpr6-Hsp90 interaction, suggesting a direct interaction. However, loss of Cpr6 did not alter the Ura2-Hsp90 interaction or Ura2 accumulation. The TPR domain of Cpr6 was required for Ura2 interaction, but other TPR containing co-chaperones, including Cpr7, failed to interact with Ura2 or rescue CPR6-dependent growth defects. Further analysis suggests that the carboxyl-terminal 100 amino acids of Cpr6 and Cpr7 are critical for specifying their unique functions, providing new information about this important class of Hsp90 co-chaperones.  相似文献   

8.
9.
真核细胞中近100种蛋白质都受Hsp90的调节。这些蛋白质多与信号转导作用有关,它们与Hsp90一起进入一个以Hsp90/Hsp70为主的伴侣复合体,在复合体内完成信号转导作用。Hsp90除了和蛋白质的伴侣位点结合以外,还在其他位点与辅助因子连接,这是Hsp90能与蛋白质及辅助因子组装成复合体,并进而调节其信号作用的结构基础。类固醇受体等蛋白质的信号转导作用是在Hsp70、Hsp90为基础的5种蛋白质(Hsp90,Hsp70,Hop,Hsp40和p23)组成的复合体中进行的。这个系统可以帮助理解在真核细胞中,Hsp70和Hsp90怎样联合作用,改变底物蛋白构象,以及怎样应答信号作用。  相似文献   

10.
11.
12.
13.
14.
15.
Highly conserved molecular chaperone Hsp70 heat shock proteins play a key role in maintaining protein homeostasis (proteostasis). DnaK, a major Hsp70 in Escherichia coli, has been widely used as a paradigm for studying Hsp70s. In the absence of ATP, purified DnaK forms low-ordered oligomer, whereas ATP binding shifts the equilibrium toward the monomer. Recently, we solved the crystal structure of DnaK in complex with ATP. There are two molecules of DnaK-ATP in the asymmetric unit. Interestingly, the interfaces between the two molecules of DnaK are large with good surface complementarity, suggesting functional importance of this crystallographic dimer. Biochemical analyses of DnaK protein supported the formation of dimer in solution. Furthermore, our cross-linking experiment based on the DnaK-ATP structure confirmed that DnaK forms specific dimer in an ATP-dependent manner. To understand the physiological function of the dimer, we mutated five residues on the dimer interface. Four mutations, R56A, T301A, N537A, and D540A, resulted in loss of chaperone activity and compromised the formation of dimer, indicating the functional importance of the dimer. Surprisingly, neither the intrinsic biochemical activities, the ATP-induced allosteric coupling, nor GrpE co-chaperone interaction is affected appreciably in all of the mutations except for R56A. Unexpectedly, the interaction with co-chaperone Hsp40 is significantly compromised. In summary, this study suggests that DnaK forms a transient dimer upon ATP binding, and this dimer is essential for the efficient interaction of DnaK with Hsp40.  相似文献   

16.
分子伴侣热激蛋白90(heat-shock protein 90,Hsp90)在生物体内具有重要的生理功能,它在许多肿瘤细胞中表达增加。临床研究发现Hsp90抑制剂单一用药或者联合用药都具有较好的抗肿瘤效果,因此目前Hsp90被认为是癌症治疗一个非常有潜力的靶标。本文总结了Hsp90的结构功能、Hsp90抑制剂的作用机理以及Hsp90抑制剂的临床应用前景,希望为设计和开发新的Hsp90抑制剂提供一定的参考。  相似文献   

17.
18.
Cytosolic heat shock protein 90 (Hsp90) has been shown to be essential for many infectious pathogens and is considered a potential target for drug development. In this study, we have carried out biochemical characterization of Hsp90 from a poorly studied protozoan parasite of clinical importance, Entamoeba histolytica. We have shown that Entamoeba Hsp90 can bind to both ATP and its pharmacological inhibitor, 17-AAG (17-allylamino-17-demethoxygeldanamycin), with Kd values of 365.2 and 10.77 μM, respectively, and it has a weak ATPase activity with a catalytic efficiency of 4.12 × 10− 4 min− 1 μM− 1. Using inhibitor 17-AAG, we have shown dependence of Entamoeba on Hsp90 for its growth and survival. Hsp90 function is regulated by various co-chaperones. Previous studies suggest a lack of several important co-chaperones in E. histolytica. In this study, we describe the presence of a novel homologue of co-chaperone Aha1 (activator of Hsp90 ATPase), EhAha1c, lacking a canonical Aha1 N-terminal domain. We also show that EhAha1c is capable of binding and stimulating ATPase activity of EhHsp90. In addition to highlighting the potential of Hsp90 inhibitors as drugs against amoebiasis, our study highlights the importance of E. histolytica in understanding the evolution of Hsp90 and its co-chaperone repertoire.  相似文献   

19.
Histone deacetylases (HDACs) play important roles in fundamental cellular processes, and HDAC inhibitors are emerging as promising cancer therapeutics. p73, a member of the p53 family, plays a critical role in tumor suppression and neural development. Interestingly, p73 produces two classes of proteins with opposing functions: the full-length TAp73 and the N-terminally truncated ΔNp73. In the current study, we sought to characterize the potential regulation of p73 by HDACs and found that histone deacetylase 1 (HDAC1) is a key regulator of TAp73 protein stability. Specifically, we showed that HDAC1 inhibition by HDAC inhibitors or by siRNA shortened the half-life of TAp73 protein and subsequently decreased TAp73 expression under normal and DNA damage-induced conditions. Mechanistically, we found that HDAC1 knockdown resulted in hyperacetylation and inactivation of heat shock protein 90, which disrupted the interaction between heat shock protein 90 and TAp73 and thus promoted the proteasomal degradation of TAp73. Functionally, we found that down-regulation of TAp73 was required for the enhanced cell migration mediated by HDAC1 knockdown. Together, we uncover a novel regulation of TAp73 protein stability by HDAC1-heat shock protein 90 chaperone complex, and our data suggest that TAp73 is a critical downstream mediator of HDAC1-regulated cell migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号