首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a hybrid dual‐wavelength optoacoustic and ultrasound bio‐microscope capable of rapid transcranial visualization of morphology and oxygenation status of large‐scale cerebral vascular networks. Imaging of entire cortical vasculature in mice is achieved with single capillary resolution and complemented by simultaneously acquired pulse‐echo ultrasound microscopy scans of the mouse skull. The new approach holds potential to facilitate studies into neurological and vascular abnormalities of the brain. Further details can be found in the article by Johannes Rebling, Héctor Estrada, Sven Gottschalk, et al. ( e201800057 ).

  相似文献   


2.
Clinical cancer treatment aims to target all cell subpopulations within a tumor. Autofluorescence microscopy of the metabolic cofactors NAD(P)H and FAD has shown sensitivity to anti‐cancer treatment response. Alternatively, flow cytometry is attractive for high throughput analysis and flow sorting. This study measures cellular autofluorescence in three flow cytometry channels and applies cellular autofluorescence to sort a heterogeneous mixture of breast cancer cells into subpopulations enriched for each phenotype. Sorted cells were grown in culture and sorting was validated by morphology, autofluorescence microscopy, and receptor expression. Ultimately, this method could be applied to improve drug development and personalized treatment planning.

  相似文献   


3.
《Plant Species Biology》2017,32(2):105-106
Cover Image Left: Flowering individuals of Gastrodia elata. Right: Individual flowers of Gastroidia elate. Photographed by Naoto Sugiura. Rebun Island, Hokkaido, Japan

  相似文献   


4.
Nanoscopy enables breaking down the light diffraction limit and reveals the nanostructures of objects being studied using light. In 2014, three scientists pioneered the development of nanoscopy and won the Nobel Prize in Chemistry. This recognized the achievement of the past twenty years in the field of nanoscopy. However, fluorescent probes used in the field of nanoscopy are still numbered. Here, we review the currently available four categories of probes and existing methods to improve the performance of probes.

  相似文献   


5.
The role of ultraviolet radiation in oxidative stress‐related ocular pathologies is less known than its role in skin cancer. Excessive exposure to ultraviolet radiation is associated with increased oxidative stress in eye tissues, which may promote the development of photokeratitis, cataract, and retinal damages. Children are especially vulnerable: large pupils, transparent ocular media. Efficient everyday protection of the eye should be considered from early age. (Image: with permission from Carl Zeiss Vision International GmbH, Aalen, Germany) Further details can be found in the article by Iliya V. Ivanov, Timo Mappes, Patrick Schaupp, et al. ( e201700377 ).

  相似文献   


6.
Germanium vs Silicon: All‐dielectric nanoparticles provides the heat resistance for proteins under light‐induced heating. Further details can be found in the article by Andrei A. Krasilin et al. ( e201700322 )

  相似文献   


7.
We disclose a theranostic device for performing image‐guided riboflavin/UV‐A corneal cross‐linking. The device determines treatment efficacy by real time monitoring of riboflavin concentration in the corneal stroma. The study shows efficacy of the device in eye bank human donor tissues. Further details can be found in the article by Giuseppe Lombardo et al. ( e201800028 )

  相似文献   


8.
Label‐free optical nano‐imaging of dendritic structures and intracellular granules in biological cells is demonstrated using a bright and homogeneous nanometric light source. The optical nanometric light source is excited using a focused electron beam. A zinc oxide (ZnO) luminescent thin film was fabricated by atomic layer deposition (ALD) to produce the nanoscale light source. The ZnO film formed by ALD emitted the bright, homogeneous light, unlike that deposited by another method. The dendritic structures of label‐free macrophage receptor with collagenous structure‐expressing CHO cells were clearly visualized below the diffraction limit. The inner fiber structure was observed with 120 nm spatial resolution. Because the bright homogeneous emission from the ZnO film suppresses the background noise, the signal‐to‐noise ratio (SNR) for the imaging results was greater than 10. The ALD method helps achieve an electron beam excitation assisted microscope with high spatial resolution and high SNR.

  相似文献   


9.
Quantitative laser‐induced breakdown spectroscopy (LIBS) is successfully used for in‐vitro analysis of early stage calcification in aortic valvular interstitial cells (VICs). LIBS results indicate 5‐fold improvement in the detection limit of calcium deposition in VICs over cell histology techniques involving staining and colorimetric calcium assays. These results can establish LIBS at the forefront of early detection of calcification in VICs for pathological studies on Calcific Aortic Valve Disease (CAVD). Further details can be found in the article by Seyyed Ali Davari et al. ( e201600288 ).

  相似文献   


10.
Full‐field functional optical hemocytometer (FFOH), based on the absorption intensity fluctuation modulation (AIFM) effect, is in vivo label‐free image method for capillaries of near‐transparent live biological specimens. FFOH can provide a flow video, flow velocity measurement and RBC count, simultaneously. The zebrafish experimental result shows the potential to study the physiological mechanisms of the blood circulation systems. Further details can be found in the article by Fuli Zhang et al. ( e201700039 )

  相似文献   


11.
Multiphoton microscopy (MPM) has become increasingly popular and widely used in both basic and clinical liver studies over the past few years. This technology provides insights into deep live tissues with less photobleaching and phototoxicity, which helps us to better understand the cellular morphology, microenvironment, immune responses and spatiotemporal dynamics of drugs and therapeutic cells in the healthy and diseased liver. This review summarizes the principles, opportunities, applications and limitations of MPM in hepatology. A key emphasis is on the use of fluorescence lifetime imaging (FLIM) to add additional quantification and specificity to the detection of endogenous fluorescent species in the liver as well as exogenous molecules and nanoparticles that are applied to the liver in vivo. We anticipate that in the near future MPM‐FLIM will advance our understanding of the cellular and molecular mechanisms of liver diseases, and will be evaluated from bench to bedside, leading to real‐time histology of human liver diseases.

  相似文献   


12.
The picture depicts the different 3d‐printed organs, thorax, lungs, heart and bone. Assembled it is used as an optical phantom of a preterm infant for performing percutaneous optical measurements of the gas content in the lungs. In order to simulate the optical properties of the tissue, the heart and thorax can be filled with liquid phantoms, a mixture of Intralipid and Indian Ink. Further details can be found in the article by Jim Larsson et al. ( e201700097 ).

  相似文献   


13.
There is a huge interest in developing strategies to effectively eliminate biofilms due to their negative impact in both industrial and clinical settings. In this study, structural damage was induced on two day‐old B. subtilis biofilms using the interaction of 532 nm pulsed laser with gold thin films. Radiant exposure of 225 mJ/cm2 induced distinct changes on the surface structure and overall morphology of the matured biofilms after laser irradiation. Moreover, at the radiant exposure used, changes in the colour and viscosity of the biofilm were observed which may indicate a compromised extracellular matrix. Irradiated biofilms in the presence of gold film also showed strong propidium iodide signal which implies an increase in the number of dead bacterial cells after laser treatment. Thus, this laser‐based technique is a promising approach in targeting and eradicating matured biofilms attached on surfaces such as medical implants.

  相似文献   


14.
Optical coherence tomography through an implanted dorsal imaging window allows for prolonged in vivo structural and functional assessment of the mouse oviduct (Fallopian tube), including threedimensional structural imaging, quantitative measurements of the smooth muscle contraction, and mapping of cilia beat frequency. This method brings new opportunities for live studies and longitudinal analyses of mouse reproductive events in the native context. Further details can be found in the article by Shang Wang et al. ( e201700316 ).

  相似文献   


15.
In vivo multiphoton imaging was used to map changes in hepatobiliary metabolism in liver fibrosis (left column) and hepatocellular carcinoma (right column). The top row shows the maps of kinetic rate constant of the uptake and esterase processing while the bottom row shows that of bile canalicular excretion of xenobiotics. Further details can be found in the article by Chih‐Ju Lin, Sheng‐Lin Lee, Wei‐Hsiang Wang, et al. ( e201700338 ).

  相似文献   


16.
The biomaterial distribution and its molecular mechanism of embryonic development in Japanese medaka fish were visualized without staining using high‐speed near‐infrared imaging. It was a remarkable achievement to visualize the structures of eyes, lipid bilayer membranes, micelles, and water structural variations at the interface of different substances. Furthermore, insights on lipid metabolism and membrane functions were obtained from the biased distribution of lipoproteins and the presence of unsaturated fatty acids in the egg membrane. Further details can be found in the article by Mika Ishigaki ( e201700115 )

  相似文献   


17.
Third Harmonic Generation (THG) microscopy as a non‐invasive, label free imaging methodology, allows linkage of lipid profiles with various breast cancer cells. The collected THG signal arise mostly from the lipid droplets and the membrane lipid bilayer. Quantification of THG signal can accurately distinguish HER2‐positive cells. Further analysis using Fourier transform infrared (FTIR) spectra reveals cancer‐specific profiles, correlating lipid raft‐corresponding spectra to THG signal, associating thus THG to chemical information.

THG imaging of a cancer cell.  相似文献   


18.
Protein secondary structural alteration in the serum sample as induced by colitis has been demonstrated via the spectral fitting. Using DSS mouse models of acute colitis and IL10‐/‐ for chronic colitis, a significant difference in the integral ratio of Gaussian energy bands representing α‐helix and β‐pleated sheet structures were obtained. Further details can be found in the article by Jitto Titus et al. ( e201700057 ).

  相似文献   


19.
A plasmon waveguide resonance (PWR) sensor is proposed for studying the interaction between gold nanoparticles and proteins. The ability of the PWR sensor to operate in both TM and TE Polarizations, i.e. its polarization diversity, facilitates the simultaneous spectroscopy of the nanoparticles surface reactions using both polarizations. The response of each polarization to streptavidin‐biotin binding at the surface of gold nanoparticles is investigated in real time. Finally, using the principles of multimode spectroscopy, the nanoparticle's surface reactions are decoupled from the bulk solution refractive index variations.

Schematic diagram of the NP‐modified PWR sensor  相似文献   


20.
Congenital cardiovascular defects are the leading cause of birth defect related death. It has been hypothesized that fluid mechanical forces of embryonic blood flow affect cardiovascular development and play a role in congenital malformations. Studies in small animal embryos can improve our understanding of congenital malformations and can lead to better treatment. We present a feasibility study in which high‐resolution optical coherence tomography (OCT) and computational fluid dynamics (CFD) are combined to provide quantitative analysis of the embryonic flow mechanics and the associated anatomy in a small animal model.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号