首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cover shows the image enhancement of biological tissues provided by the Indices of Polarimetric Purity (IPPs). By measuring the Mueller matrix of a biological sample, using an imaging polarimeter, the IPPs are calculated. They are polarimetric indicators providing further synthetization of depolarizing samples and leading to enhanced image contrast for some biological structures. Once the IPPs are calculated, a pseudo‐colouring technique is applied for higher visualization. Further details can be found in the article by Albert Van Eeckhout et al. ( e201700189 )

  相似文献   


2.
A hyperspectral image data cube acquired from HEK‐293 cells labeled with cytoplasmic and nuclear stains: Calcein Green and NucBlu. The top view (XY plane) displays three spectrally unmixed channels for cellular autofluorescence (red), Calcein Green (green), and NucBlue (blue). The Z axis shows spectral information, from low to high wavelength. The article by Leavesley and colleagues describes an approach for calculating the sensitivity of spectral imaging assays for detecting a fluorescence signature within a mix of other signatures or autofluorescence. Further details can be found in the article by Silas J. Leavesley et al. ( e201600227 ).

  相似文献   


3.
We use terahertz imaging to measure four human skin scars in vivo. Clear contrast between the refractive index of the scar and surrounding tissue was observed for all of the scars, despite some being difficult to see with the naked eye. Additionally, we monitored the healing process of a hypertrophic scar. We found that the contrast in the absorption coefficient became less prominent after a few months post‐injury, but that the contrast in the refractive index was still significant even months post‐injury. Our results demonstrate the capability of terahertz imaging to quantitatively measure subtle changes in skin properties and this may be useful for improving scar treatment and management.

  相似文献   


4.
Based on multicolor quantum dots (QDs) labeling, the joint tagging assisted super‐resolution radial fluctuation (JT‐SRRF) nanoscopy achieves high‐fidelity super‐resolution imaging of subcellular microtubules and fast live‐cell parallel tracking of cholera toxin subunit B (CTB) induced lipid clusters spatially distributed below the optical diffraction limit. This method paves the way for fast high‐density parallel tracking, which is especially beneficial for the investigation of the intensive dynamics in live‐cell applications. Further details can be found in the article by Zhiping Zeng, Jing Ma, Peng Xi, and Canhua Xu ( e201800020 ).

  相似文献   


5.
We disclose a theranostic device for performing image‐guided riboflavin/UV‐A corneal cross‐linking. The device determines treatment efficacy by real time monitoring of riboflavin concentration in the corneal stroma. The study shows efficacy of the device in eye bank human donor tissues. Further details can be found in the article by Giuseppe Lombardo et al. ( e201800028 )

  相似文献   


6.
Germanium vs Silicon: All‐dielectric nanoparticles provides the heat resistance for proteins under light‐induced heating. Further details can be found in the article by Andrei A. Krasilin et al. ( e201700322 )

  相似文献   


7.
In this study, Raman microspectroscopy has been utilized to identify mycobacteria to the species level. Because of the slow growth of mycobacteria, the per se cultivation‐independent Raman microspectroscopy emerges as a perfect tool for a rapid on‐the‐spot mycobacterial diagnostic test. Special focus was laid upon the identification of Mycobacterium tuberculosis complex (MTC) strains, as the main causative agent of pulmonary tuberculosis worldwide, and the differentiation between pathogenic and commensal nontuberculous mycobacteria (NTM). Overall the proposed model considers 26 different mycobacteria species as well as antibiotic susceptible and resistant strains. More than 8800 Raman spectra of single bacterial cells constituted a spectral library, which was the foundation for a two‐level classification system including three support vector machines. Our model allowed the discrimination of MTC samples in an independent validation dataset with an accuracy of 94% and could serve as a basis to further improve Raman microscopy as a first‐line diagnostic point‐of‐care tool for the confirmation of tuberculosis disease.

  相似文献   


8.
Two‐photon microscopy is the tool of choice for fluorescence imaging of deep tissues with high resolution, but can be limited in three‐dimensional acquisition speed and penetration depth. In this work, these issues are addressed by using an acoustic optofluidic lens capable of ultrafast beam shaping on a pixel basis. Driving the lens with different phase profiles enables high‐speed volumetric imaging, or enhanced signal‐to‐background for deeper penetration. Further details can be found in the article by Simonluca Piazza et al. ( e201700050 )

  相似文献   


9.
Third Harmonic Generation (THG) microscopy as a non‐invasive, label free imaging methodology, allows linkage of lipid profiles with various breast cancer cells. The collected THG signal arise mostly from the lipid droplets and the membrane lipid bilayer. Quantification of THG signal can accurately distinguish HER2‐positive cells. Further analysis using Fourier transform infrared (FTIR) spectra reveals cancer‐specific profiles, correlating lipid raft‐corresponding spectra to THG signal, associating thus THG to chemical information.

THG imaging of a cancer cell.  相似文献   


10.
This study provides a simple method to detect human distal radius bone density based on near infrared (NIR) imaging. The information of bone mineral density can be measured by transluminational optical bone densitometric system. Compared to dual‐energy x‐ray absorptiometry (DXA) results in clinical trial, NIR images show a strong correlation to DXA. Further details can be found in the article by Chun Chung, Yu‐Pin Chen, Tsai‐Hsueh Leu, and Chia‐Wei Sun ( e201700342 ).

  相似文献   


11.
Full‐field functional optical hemocytometer (FFOH), based on the absorption intensity fluctuation modulation (AIFM) effect, is in vivo label‐free image method for capillaries of near‐transparent live biological specimens. FFOH can provide a flow video, flow velocity measurement and RBC count, simultaneously. The zebrafish experimental result shows the potential to study the physiological mechanisms of the blood circulation systems. Further details can be found in the article by Fuli Zhang et al. ( e201700039 )

  相似文献   


12.
This article describes a rapid, simple and cost‐effective technique that could lead to a screening method for colitis without the need for biopsies or in vivo measurements. This screening technique includes the testing of serum using Attenuated Total Reflectance Fourier Transform Infrared (ATR‐FTIR) spectroscopy for the colitis‐induced increased presence of mannose. Chronic (Interleukin 10 knockout) and acute (Dextran Sodium Sulphate‐induced) models for colitis are tested using the ATR‐FTIR technique. Arthritis (Collagen Antibody Induced Arthritis) and metabolic syndrome (Toll like receptor 5 knockout) models are also tested as controls. The marker identified as mannose uniquely screens and distinguishes the colitic from the non‐colitic samples and the controls. The reference or the baseline spectrum could be the pooled and averaged spectra of non‐colitic samples or the subject's previous sample spectrum. This shows the potential of having individualized route maps of disease status, leading to personalized diagnosis and drug management.

  相似文献   


13.
Optical spectroscopic techniques show improved diagnostic accuracy for non‐invasive detection of cervical cancers. In this study, sensitivity and specificity of two in vivo modalities, i.e diffuse reflectance spectroscopy (DRS) and Raman spectroscopy (RS), were compared by utilizing spectra recorded from the same sites (67 tumor (T), 22 normal cervix (C), and 57 normal vagina (V)). Data was analysed using principal component – linear discriminant analysis (PC‐LDA), and validated using leave‐one‐out‐cross‐validation (LOOCV). Sensitivity, specificity, positive predictive value and negative predictive value for classification between normal (N) and tumor (T) sites were 91%, 96%, 95% and 93%, respectively for RS and 85%, 95%, 93% and 88%, respectively for DRS. Even though DRS revealed slightly lower diagnostic accuracies, owing to its lower cost and portability, it was found to be more suited for cervical cancer screening in low resource settings. On the other hand, RS based devices could be ideal for screening patients with centralised facilities in developing countries.

  相似文献   


14.
Semiconductor nanocomposites provide advantages beyond the capability of typical fluorescent materials for cancer detection. In this work, nanowire‐based probes with dual color channels are employed to demonstrate the capacity of cancer cell detection. Purple emitting ZnO/antibody probes are applied to detect cancer cells and meanwhile TiO2/antibody probes with green light emission are applied to identify normal fibroblast cells. A series of quantitative analyses are conducted to verify the correlation between the concentrations of ZnO and TiO2 probes, cell numbers, and peak intensities of the PL spectra. The results provide a quantitative reference for developing nanowire‐based cancel cell probes.

  相似文献   


15.
Protein secondary structural alteration in the serum sample as induced by colitis has been demonstrated via the spectral fitting. Using DSS mouse models of acute colitis and IL10‐/‐ for chronic colitis, a significant difference in the integral ratio of Gaussian energy bands representing α‐helix and β‐pleated sheet structures were obtained. Further details can be found in the article by Jitto Titus et al. ( e201700057 ).

  相似文献   


16.
The biomaterial distribution and its molecular mechanism of embryonic development in Japanese medaka fish were visualized without staining using high‐speed near‐infrared imaging. It was a remarkable achievement to visualize the structures of eyes, lipid bilayer membranes, micelles, and water structural variations at the interface of different substances. Furthermore, insights on lipid metabolism and membrane functions were obtained from the biased distribution of lipoproteins and the presence of unsaturated fatty acids in the egg membrane. Further details can be found in the article by Mika Ishigaki ( e201700115 )

  相似文献   


17.
Gold nanoparticles serve as imaging contrast agents useful for two‐photon nonlinear microscopy of biological cells and tissues. In this study, 100‐nm‐sized gold particles with a multitude of nanopores embedded inside have been physically synthesized and investigated for the plasmonic enhancement in two‐photon luminescence. Exhibiting remarkable potential for two‐photon imaging, the porous gold nanoparticles boost near‐infrared light absorption substantially and allow emission signals 20 times brighter than gold nanorods being currently used as typical imaging agents. Further details can be found in the article by Joo H. Park et al. ( e201700174 )

  相似文献   


18.
The broad range of applications of spatially‐offset Raman spectroscopy (SORS) were found to involve samples having only marginal differences in Raman cross‐sections between the surface and subsurface targets. We report the results of a feasibility study to evaluate the potential of the approach to identify the presence of a very low Raman‐active turbid sample placed inside a highly Raman‐active diffusely scattering matrix. Paraffin sandwiched tissue blocks prepared by embedding slices of chicken muscle tissue into solid paraffin blocks were employed as representative samples for the study. It was found that in contrast to the several millimetres of probing depth reported in the earlier applications, the Raman signatures of tissue were best recovered when it was located beneath the surface of the paraffin block at a depth of around a millimetre, beyond which the quality of recovery was increasingly poorer. However, the probing depth could be further increased by increasing the thickness of the embedded tissue sections. The results clearly suggest that though the probing depth achievable under the current condition is less than that found in previous applications, nevertheless it is sufficient for various other applications that would not require probing as deep as was required earlier.

  相似文献   


19.
Brillouin microspectroscopy is a powerful technique for noninvasive optical imaging. In particular, Brillouin microspectroscopy uniquely allows assessing a sample's mechanical properties with microscopic spatial resolution. Recent advances in background‐free Brillouin microspectroscopy make it possible to image scattering samples without substantial degradation of the data quality. However, measurements at the cellular‐ and subcellular‐level have never been performed to date due to the limited signal strength. In this report, by adopting our recently optimized VIPA‐based Brillouin spectrometer, we probed the microscopic viscoelasticity of individual red blood cells. These measurements were supplemented by chemically specific measurements using Raman microspectroscopy.

  相似文献   


20.
Label‐free optical nano‐imaging of dendritic structures and intracellular granules in biological cells is demonstrated using a bright and homogeneous nanometric light source. The optical nanometric light source is excited using a focused electron beam. A zinc oxide (ZnO) luminescent thin film was fabricated by atomic layer deposition (ALD) to produce the nanoscale light source. The ZnO film formed by ALD emitted the bright, homogeneous light, unlike that deposited by another method. The dendritic structures of label‐free macrophage receptor with collagenous structure‐expressing CHO cells were clearly visualized below the diffraction limit. The inner fiber structure was observed with 120 nm spatial resolution. Because the bright homogeneous emission from the ZnO film suppresses the background noise, the signal‐to‐noise ratio (SNR) for the imaging results was greater than 10. The ALD method helps achieve an electron beam excitation assisted microscope with high spatial resolution and high SNR.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号