首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 555 毫秒
1.
Proteoglycans are macromolecules that consist of a core protein and one or more glycosaminoglycan side chains. Previously, we reported that transforming growth factor‐β1 (TGF‐β1) regulates the synthesis of a large heparan sulfate proteoglycan, perlecan, and a small leucine‐rich dermatan sulfate proteoglycan, biglycan, in vascular endothelial cells depending on cell density. Recently, we found that TGF‐β1 first upregulates and then downregulates the expression of syndecan‐4, a transmembrane heparan sulfate proteoglycan, via the TGF‐β receptor ALK5 in the cells. In order to identify the intracellular signal transduction pathway that mediates this modulation, bovine aortic endothelial cells were cultured and treated with TGF‐β1. Involvement of the downstream signaling pathways of ALK5—the Smad and MAPK pathways—in syndecan‐4 expression was examined using specific siRNAs and inhibitors. The data indicate that the Smad3–p38 MAPK pathway mediates the early upregulation of syndecan‐4 by TGF‐β1, whereas the late downregulation is mediated by the Smad2/3 pathway. Multiple modulations of proteoglycan synthesis may be involved in the regulation of vascular endothelial cell functions by TGF‐β1. J. Cell. Biochem. 118: 2009–2017,2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.  相似文献   

2.
Syndecan-1 and syndecan-4 are members of the syndecan family of transmembrane heparan sulfate proteoglycans. Vascular endothelial cells synthesize both species of proteoglycans and use them to regulate the blood coagulation-fibrinolytic system and their proliferation via their heparin-like activity and FGF-2 binding activity, respectively. However, little is known about the crosstalk between the expressions of the proteoglycan species. Previously, we reported that biglycan, a small leucine-rich dermatan sulfate proteoglycan, intensifies ALK5–Smad2/3 signaling by TGF-β1 and downregulates syndecan-4 expression in vascular endothelial cells. In the present study, we investigated the crosstalk between the expressions of syndecan-1 and other proteoglycan species (syndecan-4, perlecan, glypican-1, and biglycan) in bovine aortic endothelial cells in a culture system. These data suggested that syndecan-1 downregulated syndecan-4 expression by suppressing the endogenous FGF-2-dependent ERK1/2 pathway and FGF-2-independent p38 MAPK pathway in the cells. Moreover, this crosstalk was a one-way communication from syndecan-1 to syndecan-4, suggesting that syndecan-4 compensated for the reduced activity in the regulation of vascular endothelial cell functions caused by the decreased expression of syndecan-1 under certain conditions.  相似文献   

3.
VEGF (vascular endothelial growth factor) is a potent proangiogenic cytokine, and vascular change is one of the characteristic features of airway remodelling. Since the glucocorticoids have shown antifibrosis properties, we sought to investigate whether budesonide, a widely used glucocorticoid in clinical practice, could attenuate TGF‐β1 (transforming growth factor‐β1)‐induced VEGF production by HFL‐1 (human lung fibroblasts). HFL‐1 fibroblasts were treated with various concentrations of budesonide (10?11 M, 10?9 M and 10?7 M) in the absence or presence of TGF‐β1. Postculture media were collected for ELISA of VEGF at the indicated times. The cell lysates were subjected to Western blotting analysis to test TGF‐β1/Smad and MAP (mitogen‐activated protein) kinase signalling activation, respectively. The results suggested that budesonide pretreatment reduced the significant increase of VEGF release induced by TGF‐β1 in HFL‐1 fibroblasts in a dose‐dependent manner, and suppressed the increase of phospho‐Smad3 and phosphor‐ERK (extracellular signal‐regulated kinase) protein levels. In conclusion, budesonide may reduce TGF‐β1‐induced VEGF production in the lung, probably through the Smad/ERK signalling pathway and, thus, may provide new sight into the molecular mechanism underlying glucocorticoid therapy for airway inflammatory diseases.  相似文献   

4.
Receptor‐interacting serine/threonine kinase 4 (RIPK4) and transforming growth factor‐β 1 (TGF‐β1) play critical roles in the development and maintenance of the epidermis. A negative correlation between the expression patterns of RIPK4 and TGF‐β signaling during epidermal homeostasis‐related events and suppression of RIPK4 expression by TGF‐β1 in keratinocyte cell lines suggest the presence of a negative regulatory loop between the two factors. So far, RIPK4 has been shown to regulate nuclear factor‐κB (NF‐κB), protein kinase C (PKC), wingless‐type MMTV integration site family (Wnt), and (mitogen‐activated protein kinase) MAPK signaling pathways. In this study, we examined the effect of RIPK4 on the canonical Smad‐mediated TGF‐β1 signaling pathway by using the immortalized human keratinocyte HaCaT cell line. According to our results, RIPK4 inhibits intracellular Smad‐mediated TGF‐β1 signaling events through suppression of TGF‐β1‐induced Smad2/3 phosphorylation, which is reflected in the upcoming intracellular events including Smad2/3‐Smad4 interaction, nuclear localization, and TGF‐β1‐induced gene expression. Moreover, the kinase activity of RIPK4 is required for this process. The in vitro wound‐scratch assay demonstrated that RIPK4 suppressed TGF‐β1‐mediated wound healing through blocking TGF‐β1‐induced cell migration. In conclusion, our results showed the antagonistic effect of RIPK4 on TGF‐β1 signaling in keratinocytes for the first time and have the potential to contribute to the understanding and treatment of skin diseases associated with aberrant TGF‐β1 signaling.  相似文献   

5.
This study investigated the roles of ERK1 and ERK2 in transforming growth factor‐β1 (TGF‐β1)‐induced tissue inhibitor of metalloproteinases‐3 (TIMP‐3) expression in rat chondrocytes, and the specific roles of ERK1 and ERK2 in crosstalk with Smad2/3 were investigated to demonstrate the molecular mechanism of ERK1/2 regulation of TGF‐β1 signalling. To examine the interaction of specific isoforms of ERK and the Smad2/3 signalling pathway, chondrocytes were infected with LV expressing either ERK1 or ERK2 siRNA and stimulated with or without TGF‐β1. At indicated time‐points, TIMP‐3 expression was determined by real‐time PCR and Western blotting; p‐Smad3, nuclear p‐Smad3, Smad2/3, p‐ERK1/2 and ERK1/2 levels were assessed. And then, aggrecan, type II collagen and the intensity of matrix were examined. TGF‐β1‐induced TIMP‐3 expression was significantly inhibited by ERK1 knock‐down, and the decrease in TIMP‐3 expression was accompanied by a reduction of p‐Smad3 in ERK1 knock‐down cells. Knock‐down of ERK2 had no effect on neither TGF‐β1‐induced TIMP‐3 expression nor the quantity of p‐Smad3. Moreover, aggrecan, type II collagen expression and the intensity of matrix were significantly suppressed by ERK1 knock‐down instead of ERK2 knock‐down. Taken together, ERK1 and ERK2 have different roles in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes. ERK1 instead of ERK2 can regulate TGF‐β/Smad signalling, which may be the mechanism through which ERK1 regulates TGF‐β1‐induced TIMP‐3 expression.  相似文献   

6.
Recent studies have suggested that platelet‐rich plasma (PRP) injections are an effective way to retard intervertebral disc degeneration, but the mechanism of action is unclear. Activated platelets release some growth factors, such as transforming growth factor‐β1 (TGF‐β1), which positively modulate the extracellular matrix of nucleus pulposus cells. The purpose of this study was to explore the mechanism underlying the PRP‐mediated inhibition of intervertebral disc degeneration. In an in vitro study, we found that the proliferation of nucleus pulposus cells was greatly enhanced with 2.5% PRP treatment. The TGF‐β1 concentration was much higher after PRP treatment. PRP administration effectively increased the collagen II, aggrecan and sox‐9 mRNA levels and decreased collagen X levels. However, Western blotting demonstrated that specifically inhibiting TGF‐β1 signalling could significantly prevent nucleus pulpous cellular expression of Smad2/3 and matrix protein. In a rabbit study, magnetic resonance imaging revealed significant recovery signal intensity in the intervertebral discs of the PRP injection group compared with the very low signal intensity in the control groups. Histologically, the PRP plus inhibitor injection group had significantly lower expression levels of Smad2/3 and collagen II than the PRP group. These results demonstrated that a high TGF‐β1 content in the platelets retarded disc degeneration in vitro and in vivo. Inhibiting the TGF‐β1/Smad2/3 pathway could prevent this recovery by inactivating Smad2/3 and down‐regulating the extracellular matrix. Therefore, the TGF‐β1/Smad2/3 pathway might play a critical role in the ability of PRP to retard intervertebral disc degeneration.  相似文献   

7.
Endothelial‐mesenchymal transition (EndMT) plays a pivotal role in organ fibrosis. This study examined the effect of SIRT1 on transforming growth factor beta (TGF‐β)‐induced EndMT in human endothelial cells (ECs) and its probable molecular mechanism. We assessed EndMT by immunofluorescence staining, quantitative real‐time polymerase chain reaction, Western blotting, and migration and invasion assays. Adenovirus was used to overexpress or knockdown SIRT1 in ECs. The regulatory relationship between SIRT1 and Smad4 was analyzed by coimmunoprecipitation assay. We found that SIRT1 was decreased in TGF‐β‐induced EndMT, and SIRT1 inhibited TGF‐β‐induced EndMT through deacetylating Smad4. Our findings suggest that SIRT1 has an important role in inhibiting EndMT by regulating the TGF‐β/Smad4 pathway in human ECs and, thus, protecting against fibrosis.  相似文献   

8.
9.
10.
Obstructive nephropathy is the end result of a variety of diseases that block drainage from the kidney(s). Transforming growth factor‐β1 (TGF‐β1)/Smad3‐driven renal fibrosis is the common pathogenesis of obstructive nephropathy. In this study, we identified petchiether A (petA), a novel small‐molecule meroterpenoid from Ganoderma, as a potential inhibitor of TGF‐β1‐induced Smad3 phosphorylation. The obstructive nephropathy was induced by unilateral ureteral obstruction (UUO) in mice. Mice received an intraperitoneal injection of petA/vehicle before and after UUO or sham operation. An in vivo study revealed that petA protected against renal inflammation and fibrosis by reducing the infiltration of macrophages, inhibiting the expression of proinflammatory cytokines (interleukin‐1β and tumour necrosis factor‐α) and reducing extracellular matrix deposition (α‐smooth muscle actin, collagen I and fibronectin) in the obstructed kidney of UUO mice; these changes were associated with suppression of Smad3 and NF‐κB p65 phosphorylation. Petchiether A inhibited Smad3 phosphorylation in vitro and down‐regulated the expression of the fibrotic marker collagen I in TGF‐β1‐treated renal epithelial cells. Further, we found that petA dose‐dependently suppressed Smad3‐responsive promoter activity, indicating that petA inhibits gene expression downstream of the TGF‐β/Smad3 signalling pathway. In conclusion, our findings suggest that petA protects against renal inflammation and fibrosis by selectively inhibiting TGF‐β/Smad3 signalling.  相似文献   

11.
Endochondral ossification is characterized by a significant interdependence between cell shape and cytoskeletal organization that accompanies the onset of chondrogenic signaling. However, the mechanisms mediating these interactions have not been well studied. Here, treatment with transforming growth factor (TGF)‐β3 at a later stage of chondrogenesis led to activation of Smad‐2 signaling and the formation of intense stress fibers, which resulted in suppressing chondrogenic differentiation of leg bud mesenchymal cells. Moreover, specific siRNA knockdown of Smad‐2 reduced TGF‐β3‐induced stress fibers via physical interactions with β‐catenin. In conclusion, our results indicate that TGF‐β3‐induced Smad signaling, in conjunction with β‐catenin, is involved in the reorganization of the actin cytoskeleton into a cortical pattern with a concomitant rounding of cells. J. Cell. Biochem. © 2009 Wiley‐Liss, Inc. This article was published online on 28 May 2009. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected 8 June 2009. J. Cell. Biochem. 107: 622–629, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
Liver fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM), and the activation of hepatic stellate cells (HSC) plays a pivotal role in the development of liver fibrosis. Periostin has been shown to regulate cell adhesion, proliferation, migration and apoptosis; however, the involvement of periostin and its role in transforming growth factor (TGF)‐β1‐induced HSC activation remains unclear. We used RT‐PCR and Western blot to evaluate the expression level of periostin in hepatic fibrosis tissues and HSCs, respectively. Cell proliferation was determined using the Cell Proliferation ELISA BrdU kit, cell cycle was analysed by flow cytometry. The expression of α‐smooth muscle actin (α‐SMA), collagen I, TGF‐β1, p‐Smad2 and p‐Smad3 were determined by western blot. Our study found that periostin was up‐regulated in liver fibrotic tissues and activated HSCs. In addition, siRNA‐periostin suppressed TGF‐β1‐induced HSC proliferation. The HSC transfected with siRNA‐periostin significantly inhibited TGF‐β1‐induced expression levels of α‐SMA and collagen I. Furthermore, TGF‐β1 stimulated the expression of periostin, and siRNA‐periostin attenuated TGF‐β1‐induced Smad2/3 activation in HSCs. These results suggest that periostin may function as a novel regulator to modulate HSC activation, potentially by promoting the TGF‐β1/Smad signalling pathway, and propose a strategy to target periostin for the treatment of liver fibrosis.  相似文献   

14.
15.
Acetyl‐11‐keto‐β‐boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia‐induced HK‐2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO‐induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF‐β1, α‐SMA, collagen I and collagen IV in UUO kidneys. In hypoxia‐induced HK‐2 cells, AKBA displayed remarkable cell protective effects and anti‐fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK‐2 cells, AKBA markedly down‐regulated the expression of TGFβ‐RI, TGFβ‐RII, phosphorylated‐Smad2/3 (p‐Smad2/3) and Smad4 in a dose‐dependent fashion while up‐regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF‐β/Smad signalling were reversed by transfecting with siRNA‐Klotho in HK‐2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF‐β/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.  相似文献   

16.
17.
Parathyroid hormone (PTH) exerts an anabolic action on bone but the mechanisms are incompletely understood. We showed previously that PTH interacts with the canonical Wnt‐β‐catenin signaling pathway via the transforming growth factor (TGF)‐β signaling molecule, Smad3, to modulate osteoblast differentiation and apoptosis. Here, we examined which actions of Smad3 are TGF‐β‐independent in stimulating the osteoblast phenotype and PTH‐induced Wnt‐β‐catenin signaling. For this, the TGF‐β receptor type 1 [activin receptor‐like kinase (ALK5)] inhibitor (SB431542), and a Smad3 mutant in which the site normally phosphorylated by ALK5 is mutated from SSVS to AAVA, was used. PTH induced total β‐catenin and reduced phosphorylated β‐catenin levels at 1, 6, and 24 h in mouse osteoblastic MC3T3‐E1 cells. Transient transfection of Smad3AAVA inhibited the PTH induction of total β‐catenin and reduction of phosphorylated β‐catenin levels at 6 and 24 h, but not at 1 h, indicating that the early effects occur independently of TGF‐β receptor signaling. On the other hand, MC3T3‐E1 cell clones in which Smad3AAVA was stably expressed demonstrated elevated β‐catenin levels, although alkaline phosphatase (ALP) activity and mineralization were unaltered. In contrast, MC3T3‐E1 cell clones in which wild‐type Smad3 was stably expressed exhibited increased ALP activity and mineralization that were decreased by the ALK5 inhibitor, SB431542, although the β‐catenin levels induced in these cells were not modulated. In conclusion, the present study indicates that PTH induces osteoblast β‐catenin levels via Smad3 independently of, and dependently on, TGF‐β in the early and later induction phases, respectively. J. Cell. Biochem. 108: 285–294, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Multiple studies have confirmed the pro‐oncogenic effects of PAX3 in an array of cancers, but its role in prostate cancer (PCa) remains largely undefined. The aim of this study is to investigate the role of PAX3 in PCa. PAX3 expression was compared between PCa tumor tissue and nontumor tissues and PCa cell lines and normal prostate epithelial cells (PNT2) by western blot analysis and immunohistochemistry staining. MTT and immunofluorescence assays were used to detect PCa cell proliferation. Flow cytometry was used to evaluate cell apoptosis in PCa. Transwell assays were used for the determination of cell migration and PCa cell invasion. PAX3 expression was higher in PCa tissues and human PCa cell lines. Moreover, PAX3 silencing inhibited the proliferation, metastasis, and epithelial–mesenchymal transition (EMT) of PCa cells, and increased the rates of apoptosis. PAX3 silencing inhibited transforming growth factor‐β (TGF‐β)/Smad signaling in PCa cells. The effects of si‐PAX3 on the proliferation, apoptosis, metastasis, and EMT of PCa cells were alleviated by TGF‐β1 treatment. PAX3 silencing inhibits PCa progression through the inhibition of TGF‐β/Smad signaling. This reveals PAX3 as a novel biomarker and therapeutic target for future PCa treatments.  相似文献   

19.
The enzyme chondroitin polymerizing factor (ChPF) is primarily involved in extension of the chondroitin sulfate backbone required for the synthesis of sulfated glycosaminoglycan (sGAG). Transforming growth factor beta (TGF‐β) upregulates sGAG synthesis in nucleus pulposus cells; however, the mechanisms mediating this induction are incompletely understood. Our study demonstrated that ChPF expression was negatively correlated with the grade of degenerative intervertebral disc disease. Treatment of nucleus pulposus cells with TGF‐β induced ChPF expression and enhanced Smad2/3, RhoA/ROCK activation, and the JNK, p38, and ERK1/2 MAPK signaling pathways. Selective inhibitors of Smad2/3, RhoA or ROCK1/2, and knockdown of Smad3 and ROCK1 attenuated ChPF expression and sGAG synthesis induced by TGF‐β. In addition, we showed that RhoA/ROCK1 signaling upregulated ChPF via activation of the JNK pathway but not the p38 and ERK1/2 signaling pathways. Moreover, inhibitors of JNK, p38 and ERK1/2 activity also blocked ChPF expression and sGAG synthesis induced by TGF‐β in a Smad3‐independent manner. Collectively, our data suggest that TGF‐β stimulated the expression of ChPF and sGAG synthesis in nucleus pulposus cells through Smad3, RhoA/ROCK1 and the three MAPK signaling pathways. J. Cell. Biochem. 119: 566–579, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
Tetraspanin 1(TSPAN1) as a clinically relevant gene target in cancer has been studied, but there is no direct in vivo or vitro evidence for pulmonary fibrosis (PF). Using reanalysing Gene Expression Omnibus data, here, we show for the first time that TSPAN1 was markedly down‐regulated in lung tissue of patient with idiopathic PF (IPF) and verified the reduced protein expression of TSPAN1 in lung tissue samples of patient with IPF and bleomycin‐induced PF mice. The expression of TSPAN1 was decreased and associated with transforming growth factor‐β1 (TGF‐β1)‐induced molecular characteristics of epithelial‐to‐mesenchymal transition (EMT) in alveolar epithelial cells (AECs). Silencing TSPAN1 promoted cell migration, and the expression of alpha‐smooth muscle actin, vimentin and E‐cadherin in AECs with TGF‐β1 treatment, while exogenous TSPAN1 has the converse effects. Moreover, silencing TSPAN1 promotes the phosphorylation of Smad2/3 and stabilizes beta‐catenin protein, however, overexpressed TSPAN1 impeded TGF‐β1‐induced activation of Smad2/3 and beta‐catenin pathway in AECs. Together, our study implicates TSPAN1 as a key regulator in the process of EMT in AECs of IPF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号