首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We disclose a theranostic device for performing image‐guided riboflavin/UV‐A corneal cross‐linking. The device determines treatment efficacy by real time monitoring of riboflavin concentration in the corneal stroma. The study shows efficacy of the device in eye bank human donor tissues. Further details can be found in the article by Giuseppe Lombardo et al. ( e201800028 )

  相似文献   


2.
Full‐field functional optical hemocytometer (FFOH), based on the absorption intensity fluctuation modulation (AIFM) effect, is in vivo label‐free image method for capillaries of near‐transparent live biological specimens. FFOH can provide a flow video, flow velocity measurement and RBC count, simultaneously. The zebrafish experimental result shows the potential to study the physiological mechanisms of the blood circulation systems. Further details can be found in the article by Fuli Zhang et al. ( e201700039 )

  相似文献   


3.
Raman images were used to study the effect of the contaminant chlorpyriphos‐oxon on zebrafish eye samples. Multivariate Curve Resolution‐Alternating Least Squares (MCR‐ALS) was used to obtain the distribution maps and spectral signatures of biological components present in the images analyzed. The use of MCRALS spectral signatures as starting information for Partial Least Squares‐Discriminant Analysis allowed statistical assessment of the effect of the contaminant at a specific tissue level. Further details can be found in the article by Víctor Olmos et al. ( e201700089 ).

  相似文献   


4.
Third Harmonic Generation (THG) microscopy as a non‐invasive, label free imaging methodology, allows linkage of lipid profiles with various breast cancer cells. The collected THG signal arise mostly from the lipid droplets and the membrane lipid bilayer. Quantification of THG signal can accurately distinguish HER2‐positive cells. Further analysis using Fourier transform infrared (FTIR) spectra reveals cancer‐specific profiles, correlating lipid raft‐corresponding spectra to THG signal, associating thus THG to chemical information.

THG imaging of a cancer cell.  相似文献   


5.
We present a hybrid dual‐wavelength optoacoustic and ultrasound bio‐microscope capable of rapid transcranial visualization of morphology and oxygenation status of large‐scale cerebral vascular networks. Imaging of entire cortical vasculature in mice is achieved with single capillary resolution and complemented by simultaneously acquired pulse‐echo ultrasound microscopy scans of the mouse skull. The new approach holds potential to facilitate studies into neurological and vascular abnormalities of the brain. Further details can be found in the article by Johannes Rebling, Héctor Estrada, Sven Gottschalk, et al. ( e201800057 ).

  相似文献   


6.
Germanium vs Silicon: All‐dielectric nanoparticles provides the heat resistance for proteins under light‐induced heating. Further details can be found in the article by Andrei A. Krasilin et al. ( e201700322 )

  相似文献   


7.
The biomaterial distribution and its molecular mechanism of embryonic development in Japanese medaka fish were visualized without staining using high‐speed near‐infrared imaging. It was a remarkable achievement to visualize the structures of eyes, lipid bilayer membranes, micelles, and water structural variations at the interface of different substances. Furthermore, insights on lipid metabolism and membrane functions were obtained from the biased distribution of lipoproteins and the presence of unsaturated fatty acids in the egg membrane. Further details can be found in the article by Mika Ishigaki ( e201700115 )

  相似文献   


8.
A new type of high‐throughput imaging flow cytometer (>20 000 cells s‐1) based upon an all‐optical ultrafast laser‐scanning imaging technique, called free‐space angular‐chirp‐enhanced delay (FACED) is reported. FACED imaging flow cytometers enables high‐throughput visualization of functional morphology of individual cells with subcellular resolution. It critically empowers largescale and deep characterization of single cells and their heterogeneity with high statistical power— an ability to become increasingly critical in single‐cell analysis adopted in a wide range of biomedical and life‐science applications. Further details can be found in the article by Wenwei Yan et al. ( e201700178 )

  相似文献   


9.
Tissue autofluorescence provides fluorescence lifetime contrast between acellular tissue and that containing newly seeded cells. Fiber‐based fluorescence lifetime imaging (FLIm) can be used for tracking recellularization of engineered vascular grafts and potential matrix remodeling at large scale, without compromising sample integrity. FLIm cellular contrast was verified in a subset of samples seeded with eGFP‐labelled cells. Results suggests fiberbased FLIm is a suitable tool for monitoring recellularization of engineered tissue nondestructively. Further details can be found in the article by Alba Alfonso‐Garcia, Jeny Shklover, Benjamin E. Sherlock, et al. ( e201700391 ).

  相似文献   


10.
Protein secondary structural alteration in the serum sample as induced by colitis has been demonstrated via the spectral fitting. Using DSS mouse models of acute colitis and IL10‐/‐ for chronic colitis, a significant difference in the integral ratio of Gaussian energy bands representing α‐helix and β‐pleated sheet structures were obtained. Further details can be found in the article by Jitto Titus et al. ( e201700057 ).

  相似文献   


11.
Photoconversion, an irreversible shift in a fluorophore emission spectrum after light exposure, is a powerful tool for marking cellular and subcellular compartments and tracking their dynamics in vivo. This paper reports on the photoconversion properties of Di‐8‐ANEPPS, a commercially available membrane dye. When illuminated with near‐infrared femtosecond laser pulses, Di‐8‐ANEPPS undergoes multiphoton photoconversion as indicated by the supralinear dependence of the conversion rate ρpc on the incident power (), and by the ability to photoconvert a thin optical section in a three‐dimensional matrix. The characteristic emission spectrum changed from red to blue, and ratiometric analysis on single cells in vitro revealed a 65‐fold increase in the blue to red wavelength ratio after photoconversion. The spectral shift is preserved in vivo for hours, making Di‐8‐ANEPPS a useful dye for intravital cell marking and tracking applications.

  相似文献   


12.
For the first time, spatially resolved quantitative metrics of light scattering recovered with sub‐diffusive spatial frequency domain imaging (sd‐SFDI) are shown to be sensitive to changes in intratumoral morphology and viability by direct comparison to histopathological analysis. Two freshly excised subcutaneous murine tumor cross‐sections were measured with sd‐SFDI, and recovered optical scatter parameter maps were co‐registered to whole mount histology. Unique clustering of the optical scatter parameters vs. γ (i.e. diffuse scattering vs. relative backscattering) evaluated at a single wavelength showed complete separation between regions of viable tumor, aggresive tumor with stromal growth, varying levels of necrotic tumor, and also peritumor muscle. The results suggest that with further technical development, sd‐SFDI may represent a non‐destructive screening tool for analysis of excised tissue or a non‐invasive approach to investigate suspicious lesions without the need for exogenous labels or spectrally resolved imaging.

  相似文献   


13.
This paper presents a novel compact fiberoptic based singlet oxygen near‐infrared luminescence probe coupled to an InGaAs/InP single photon avalanche diode (SPAD) detector. Patterned time gating of the single‐photon detector is used to limit unwanted dark counts and eliminate the strong photosensitizer luminescence background. Singlet oxygen luminescence detection at 1270 nm is confirmed through spectral filtering and lifetime fitting for Rose Bengal in water, and Photofrin in methanol as model photosensitizers. The overall performance, measured by the signal‐to‐noise ratio, improves by a factor of 50 over a previous system that used a fiberoptic‐coupled superconducting nanowire single‐photon detector. The effect of adding light scattering to the photosensitizer is also examined as a first step towards applications in tissue in vivo.

  相似文献   


14.
Based on multicolor quantum dots (QDs) labeling, the joint tagging assisted super‐resolution radial fluctuation (JT‐SRRF) nanoscopy achieves high‐fidelity super‐resolution imaging of subcellular microtubules and fast live‐cell parallel tracking of cholera toxin subunit B (CTB) induced lipid clusters spatially distributed below the optical diffraction limit. This method paves the way for fast high‐density parallel tracking, which is especially beneficial for the investigation of the intensive dynamics in live‐cell applications. Further details can be found in the article by Zhiping Zeng, Jing Ma, Peng Xi, and Canhua Xu ( e201800020 ).

  相似文献   


15.
Gold nanoparticles serve as imaging contrast agents useful for two‐photon nonlinear microscopy of biological cells and tissues. In this study, 100‐nm‐sized gold particles with a multitude of nanopores embedded inside have been physically synthesized and investigated for the plasmonic enhancement in two‐photon luminescence. Exhibiting remarkable potential for two‐photon imaging, the porous gold nanoparticles boost near‐infrared light absorption substantially and allow emission signals 20 times brighter than gold nanorods being currently used as typical imaging agents. Further details can be found in the article by Joo H. Park et al. ( e201700174 )

  相似文献   


16.
The internalization kinetics and intracellular spatial distribution of functionalized diatomite nanoparticles in human lung epidermoid carcinoma cell line have been investigated by confocal fluorescence and Raman microscopy. In this context, Raman imaging due to its non‐destructive, chemically selective and label‐free working principle provides evidence that the nanovectors are internalized and co‐localize with lipid environments, suggesting an endocytic internalisation route. Nanoparticle uptakes and intracellular persistence are observed up to 72 hours, without damage to cell viability or morphology. Further details can be found in the article by Stefano Managò et al. ( e201700207 )

  相似文献   


17.
Congenital cardiovascular defects are the leading cause of birth defect related death. It has been hypothesized that fluid mechanical forces of embryonic blood flow affect cardiovascular development and play a role in congenital malformations. Studies in small animal embryos can improve our understanding of congenital malformations and can lead to better treatment. We present a feasibility study in which high‐resolution optical coherence tomography (OCT) and computational fluid dynamics (CFD) are combined to provide quantitative analysis of the embryonic flow mechanics and the associated anatomy in a small animal model.

  相似文献   


18.
Optical coherence tomography through an implanted dorsal imaging window allows for prolonged in vivo structural and functional assessment of the mouse oviduct (Fallopian tube), including threedimensional structural imaging, quantitative measurements of the smooth muscle contraction, and mapping of cilia beat frequency. This method brings new opportunities for live studies and longitudinal analyses of mouse reproductive events in the native context. Further details can be found in the article by Shang Wang et al. ( e201700316 ).

  相似文献   


19.
We use terahertz imaging to measure four human skin scars in vivo. Clear contrast between the refractive index of the scar and surrounding tissue was observed for all of the scars, despite some being difficult to see with the naked eye. Additionally, we monitored the healing process of a hypertrophic scar. We found that the contrast in the absorption coefficient became less prominent after a few months post‐injury, but that the contrast in the refractive index was still significant even months post‐injury. Our results demonstrate the capability of terahertz imaging to quantitatively measure subtle changes in skin properties and this may be useful for improving scar treatment and management.

  相似文献   


20.
Bladder cancer is among the most common cancers in the UK and conventional detection techniques suffer from low sensitivity, low specificity, or both. Recent attempts to address the disparity have led to progress in the field of autofluorescence as a means to diagnose the disease with high efficiency, however there is still a lot not known about autofluorescence profiles in the disease. The multi‐functional diagnostic system “LAKK‐M” was used to assess autofluorescence profiles of healthy and cancerous bladder tissue to identify novel biomarkers of the disease. Statistically significant differences were observed in the optical redox ratio (a measure of tissue metabolic activity), the amplitude of endogenous porphyrins and the NADH/porphyrin ratio between tissue types. These findings could advance understanding of bladder cancer and aid in the development of new techniques for detection and surveillance.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号