首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe‐derived or modified‐self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying β‐glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different β‐glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) β‐1,3‐glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long β‐1,3‐glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short β‐1,3‐glucans. Hydrolysis of the β‐1,6 side‐branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long‐chain β‐glucans. Moreover, in contrast to the recognition of short β‐1,3‐glucans in A. thaliana, perception of long β‐1,3‐glucans in N. benthamiana and rice is independent of CERK1, indicating that β‐glucan recognition may be mediated by multiple β‐glucan receptor systems.  相似文献   

2.
Cadmium (Cd) is a toxic metal that enters the food chain. Following oral ingestion, the intestinal epithelium represents an effective protective barrier against Cd toxicity, but it is also a target tissue that may accumulate and trap high levels of the ingested metal. Using human enterocytic‐like Caco‐2 cells, we have previously shown that Cd may induce a concentration and time‐dependent increase in 3‐(4,5‐dimethyl‐2‐thiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay (MTT)‐reducing activity in differentiated cultures with correlation to ERK1/2 activation. The present study shows that (a) Zn prevents the Cd‐induced hormesis effect on MTT reduction in a concentration‐dependent manner, without inhibiting Cd‐induced ERK1/2 activation; (b) Zn also induces similar hormetic stimulation of MTT‐reducing activity but without ERK1/2 activation. The effect of both metals was sensitive to inhibitors of translation during protein synthesis. There is evidence for the involvement of reactive oxygen species (ROS) in Cd‐induced ERK1/2 activation. In contrast, the Zn effect on the MTT‐reducing activity would not be triggered by ROS but it would be sensitive to the redox state of the cell. Steps downstream ERK1/2 activation by Cd does not involve eIF4E which is rather downregulated by Cd. In conclusion, Cd and Zn both can modify translation processes during protein synthesis via different signaling cascades with crosstalk, and cross‐inhibition may occur. This phenomenon is observed over a small range of metal concentrations and is characterized by a hormesis‐like response. Considering that the hormetic effect on dehydrogenase activity could reflect an adaptive response to the metals whether cross‐inhibition is beneficial is an open question.  相似文献   

3.
4.
5.
Phospholipase C‐η2 is a recently identified phospholipase C (PLC) implicated in the regulation of neuronal differentiation/maturation. PLCη2 activity is triggered by intracellular calcium mobilization and likely serves to amplify Ca2+ signals by stimulating further Ca2+ release from Ins(1,4,5)P3‐sensitive stores. The role of PLCη2 in neuritogenesis was assessed during retinoic acid (RA)‐induced Neuro2A cell differentiation. PLCη2 expression increased two‐fold during a 4‐day differentiation period. Stable expression of PLCη2‐targetted shRNA led to a decrease in the number of differentiated cells and total length of neurites following RA‐treatment. Furthermore, RA response element activation was perturbed by PLCη2 knockdown. Using a bacterial two‐hybrid screen, we identified LIM domain kinase 1 (LIMK1) as a putative interaction partner of PLCη2. Immunostaining of PLCη2 revealed significant co‐localization with LIMK1 in the nucleus and growing neurites in Neuro2A cells. RA‐induced phosphorylation of LIMK1 and cAMP‐responsive element‐binding protein was reduced in PLCη2 knock‐down cells. The phosphoinositide‐binding properties of the PLCη2 PH domain, assessed using a FRET‐based assay, revealed this domain to possess a high affinity toward PtdIns(3,4,5)P3. Immunostaining of PLCη2 together with PtdIns(3,4,5)P3 in the Neuro2A cells revealed a high degree of co‐localization, indicating that PtdIns(3,4,5)P3 levels in cellular compartments are likely to be important for the spatial control of PLCη2 signaling.  相似文献   

6.
Malignant mesothelioma (MMe) is a highly aggressive, lethal tumour requiring the development of more effective therapies. The green tea polyphenol epigallocathechin‐3‐gallate (EGCG) inhibits the growth of many types of cancer cells. We found that EGCG is selectively cytotoxic to MMe cells with respect to normal mesothelial cells. MMe cell viability was inhibited by predominant induction of apoptosis at lower doses and necrosis at higher doses. EGCG elicited H2O2 release in cell cultures, and exogenous catalase (CAT) abrogated EGCG‐induced cytotoxicity, apoptosis and necrosis. Confocal imaging of fluo 3‐loaded, EGCG‐exposed MMe cells showed significant [Ca2+]i rise, prevented by CAT, dithiothreitol or the T‐type Ca2+ channel blockers mibefradil and NiCl2. Cell loading with dihydrorhodamine 123 revealed EGCG‐induced ROS production, prevented by CAT, mibefradil or the Ca2+ chelator BAPTA‐AM. Direct exposure of cells to H2O2 produced similar effects on Ca2+ and ROS, and these effects were prevented by the same inhibitors. Sensitivity of REN cells to EGCG was correlated with higher expression of Cav3.2 T‐type Ca2+ channels in these cells, compared to normal mesothelium. Also, Cav3.2 siRNA on MMe cells reduced in vitro EGCG cytotoxicity and abated apoptosis and necrosis. Intriguingly, Cav3.2 expression was observed in malignant pleural mesothelioma biopsies from patients, but not in normal pleura. In conclusion, data showed the expression of T‐type Ca2+ channels in MMe tissue and their role in EGCG selective cytotoxicity to MMe cells, suggesting the possible use of these channels as a novel MMe pharmacological target.  相似文献   

7.
The protective effects of insulin‐like growth factor I on the somatostatin (SRIF) system in the temporal cortex after β‐amyloid (Aβ) injury may be mediated through its N‐terminal tripeptide glycine‐proline‐glutamate (GPE). GPE is cleaved to cyclo[Pro‐Gly] (cPG), a metabolite suggested to mediate in neuroprotective actions. We evaluated the effects of GPE and cPG in the temporal cortex of Aβ25–35‐treated rats on SRIF and SRIF receptor protein and mRNA levels, adenylyl cyclase activity, cell death, Aβ25–35 accumulation, cytosolic calcium levels ([Ca2+]c) and the intracellular signaling mechanisms involved. GPE and cPG did not change Aβ25–35 levels, but GPE partially restored SRIF and SRIF receptor 2 protein content and mRNA levels and protected against cell death after Aβ25–35 insult, which was coincident with Akt activation and glycogen synthase kinase 3β inhibition. In addition, GPE displaced glutamate from NMDA receptors and blocked the glutamate induced rise in cytosolic calcium in isolated rat neurons and moderately increased Ca2+ influx per se. Our findings suggest that GPE, but not its metabolite, mimics insulin‐like growth factor I effects on the SRIF system through a mechanism independent of Aβ clearance that involves modulation of calcium and glycogen synthase kinase 3β signaling.  相似文献   

8.
9.
Signaling by the transforming growth factor‐β (TGF‐β) is an essential pathway regulating a variety of cellular events. TGF‐β is produced as a latent protein complex and is required to be activated before activating the receptor. The mechanical force at the cell surface is believed to be a mechanism for latent TGF‐β activation. Using β‐actin null mouse embryonic fibroblasts as a model, in which actin cytoskeleton and cell‐surface biophysical features are dramatically altered, we reveal increased TGF‐β1 activation and the upregulation of TGF‐β target genes. In β‐actin null cells, we show evidence that the enhanced TGF‐β signaling relies on the active utilization of latent TGF‐β1 in the cell culture medium. TGF‐β signaling activation contributes to the elevated reactive oxygen species production, which is likely mediated by the upregulation of Nox4. The previously observed myofibroblast phenotype of β‐actin null cells is inhibited by TGF‐β signaling inhibition, while the expression of actin cytoskeleton genes and angiogenic phenotype are not affected. Together, our study shows a scenario that the alteration of the actin cytoskeleton and the consequent changes in cellular biophysical features lead to changes in cell signaling process such as TGF‐β activation, which in turn contributes to the enhanced myofibroblast phenotype.  相似文献   

10.
The present study was designed to investigate the role of β‐amyloid (Aβ1‐42) in inducing neuronal pyroptosis and its mechanism. Mice cortical neurons (MCNs) were used in this study, LPS + Nigericin was used to induce pyroptosis in MCNs (positive control group), and Aβ1‐42 was used to interfere with MCNs. In addition, propidium iodide (PI) staining was used to examine cell permeability, lactate dehydrogenase (LDH) release assay was employed to detect cytotoxicity, immunofluorescence (IF) staining was used to investigate the expression level of the key protein GSDMD, Western blot was performed to detect the expression levels of key proteins, and enzyme‐linked immunosorbent assay (ELISA) was utilized to determine the expression levels of inflammatory factors in culture medium, including IL‐1β, IL‐18 and TNF‐α. Small interfering RNA (siRNA) was used to silence the mRNA expression of caspase‐1 and GSDMD, and Aβ1‐42 was used to induce pyroptosis, followed by investigation of the role of caspase‐1‐mediated GSDMD cleavage in pyroptosis. In addition, necrosulfonamide (NSA), an inhibitor of GSDMD oligomerization, was used for pre‐treatment, and Aβ1‐42 was subsequently used to observe the pyroptosis in MCNs. Finally, AAV9‐siRNA‐caspase‐1 was injected into the tail vein of APP/PS1 double transgenic mice (Alzheimer's disease mice) for caspase‐1 mRNA inhibition, followed by observation of behavioural changes in mice and measurement of the expression of inflammatory factors and pyroptosis‐related protein. As results, Aβ1‐42 could induce pyroptosis in MCNs, increase cell permeability and enhance LDH release, which were similar to the LPS + Nigericin‐induced pyroptosis. Meanwhile, the expression levels of cellular GSDMD and p30‐GSDMD were up‐regulated, the levels of NLRP3 inflammasome and GSDMD‐cleaved protein caspase‐1 were up‐regulated, and the levels of inflammatory factors in the medium were also up‐regulated. siRNA intervention in caspase‐1 or GSDMD inhibited Aβ1‐42‐induced pyroptosis, and NSA pre‐treatment also caused the similar inhibitory effects. The behavioural ability of Alzheimer's disease (AD) mice was relieved after the injection of AAV9‐siRNA‐caspase‐1, and the expression of pyroptosis‐related protein in the cortex and hippocampus was down‐regulated. In conclusion, Aβ1‐42 could induce pyroptosis by GSDMD protein, and NLRP3‐caspase‐1 signalling was an important signal to mediate GSDMD cleavage, which plays an important role in Aβ1‐42‐induced pyroptosis in neurons. Therefore, GSDMD is expected to be a novel therapeutic target for AD.  相似文献   

11.
Amyloid β (Aβ)‐induced chronic inflammation is believed to be a key pathogenic process in early‐stage age‐related macular degeneration (AMD). Nucleotide oligomerization domain (NOD)‐like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation triggered by Aβ is responsible for retinal pigment epithelium (RPE) dysfunction in the onset of AMD; however, the detailed molecular mechanism remains unclear. In this study, we investigated the involvement of NADPH oxidase‐ and mitochondria‐derived reactive oxygen species (ROS) in the process of Aβ1–40‐induced NLRP3 inflammasome activation in LPS‐primed ARPE‐19 cells. The results showed that Aβ1–40 could induce excessive ROS generation, MAPK/NF‐κB signaling activation and subsequently NLRP3 inflammasome activation in LPS‐primed ARPE‐19 cells. Furthermore, the inductive effect of Aβ1–40 on NLRP3 inflammasome activation was mediated in a manner dependent on NADPH oxidase‐ and mitochondria‐derived ROS. Our findings may provide a novel insight into the molecular mechanism by which Aβ contributes to the early‐stage AMD.  相似文献   

12.
In neurons, increased protein–protein interactions between neuronal nitric oxide synthase (nNOS) and its carboxy‐terminal PDZ ligand (CAPON) contribute to excitotoxicity and abnormal dendritic spine development, both of which are involved in the development of Alzheimer's disease. In models of Alzheimer's disease, increased nNOS–CAPON interaction was detected after treatment with amyloid‐β in vitro, and a similar change was found in the hippocampus of APP/PS1 mice (a transgenic mouse model of Alzheimer's disease), compared with age‐matched background mice in vivo. After blocking the nNOS–CAPON interaction, memory was rescued in 4‐month‐old APP/PS1 mice, and dendritic impairments were ameliorated both in vivo and in vitro. Furthermore, we demonstrated that S‐nitrosylation of Dexras1 and inhibition of the ERK–CREB–BDNF pathway might be downstream of the nNOS–CAPON interaction.  相似文献   

13.
Plants survive periods of unfavourable conditions with the help of sensory mechanisms that respond to reactive oxygen species (ROS) as signalling molecules in different cellular compartments. We have previously demonstrated that protein phosphatase 2A (PP2A) impacts on organellar cross‐talk and associated pathogenesis responses in Arabidopsis thaliana. This was evidenced by drastically enhanced pathogenesis responses and cell death in cat2 pp2a‐b′γ double mutants, deficient in the main peroxisomal antioxidant enzyme CATALASE 2 and PP2A regulatory subunit B′γ (PP2A‐B′γ). In the present paper, we explored the impacts of PP2A‐B′γ and a highly similar regulatory subunit PP2A‐B′ζ in growth regulation and light stress tolerance in Arabidopsis. PP2AB′γ and PP2AB′ζ display high promoter activities in rapidly growing tissues and are required for optimal growth under favourable conditions. Upon acclimation to a combination of high light, elevated temperature and reduced availability of water, however, pp2a‐b′γζ double mutants grow similarly to the wild type and show enhanced tolerance against photo‐oxidative stress. We conclude that by controlling ROS homeostasis and signalling, PP2A‐B′γ and PP2A‐B′ζ may direct acclimation strategies upon environmental perturbations, hence acting as important determinants of defence responses and light acclimation in plants.  相似文献   

14.
15.
Raloxifene, a selective estrogen receptor modulator, displays benefits for Alzheimer's disease (AD) prevention in postmenopausal women as hormonal changes during menopause have the potential to influence AD pathogenesis, but the underlying mechanism of its neuroprotection is not entirely clear. In this study, the effects of raloxifene on amyloid‐β (Aβ) amyloidogenesis were evaluated. The results demonstrated that raloxifene inhibits Aβ42 aggregation and destabilizes preformed Aβ42 fibrils through directly interacting with the N‐terminus and middle domains of Aβ42 peptides. Consequently, raloxifene not only reduces direct toxicity of Aβ42 in HT22 neuronal cells, but also suppresses expressions of tumor necrosis factor‐α and transforming growth factor‐β induced by Aβ42 peptides, and then alleviates microglia‐mediated indirect toxicity of Aβ42 to HT22 neuronal cells. Our results suggested an alternative possible explanation for the neuroprotective activity of raloxifene in AD prevention.  相似文献   

16.
The β‐amyloid peptides (Aβ), Aβ1–40 and Aβ1–42, have been implicated in Alzheimer's disease (AD) pathology. Although Aβ1–42 is generally considered to be the pathological peptide in AD, both Aβ1–40 and Aβ1–42 have been used in a variety of experimental models without discrimination. Here we show that monomeric or oligomeric forms of the two Aβ peptides, when interact with the neuronal cation channel, α7 nicotinic acetylcholine receptors (α7nAChR), would result in distinct physiologic responses as measured by acetylcholine release and calcium influx experiments. While Aβ1–42 effectively attenuated these α7nAChR‐dependent physiology to an extent that was apparently irreversible, Aβ1–40 showed a lower inhibitory activity that could be restored upon washings with physiologic buffers or treatment with α7nAChR antagonists. Our data suggest a clear pharmacological distinction between Aβ1–40 and Aβ1–42. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 25–30, 2003  相似文献   

17.
18.
We previously demonstrated that trans-10, cis-12 (10,12) conjugated linoleic acid (CLA) induced inflammation and insulin resistance in primary human adipocytes by activating nuclear factor κB (NFκB) and extracellular signal-related kinase (ERK) signaling. In this study, we demonstrated that the initial increase in intracellular calcium ([Ca2+]i) mediated by 10,12 CLA was attenuated by TMB-8, an inhibitor of calcium release from the endoplasmic reticulum (ER), by BAPTA, an intracellular calcium chelator, and by D609, a phospholipase C (PLC) inhibitor. Moreover, BAPTA, TMB-8, and D609 attenuated 10,12 CLA–mediated production of reactive oxygen species (ROS), activation of ERK1/2 and cJun-NH2-terminal kinase (JNK), and induction of inflammatory genes. 10,12 CLA–mediated binding of NFκB to the promoters of interleukin (IL)-8 and cyclooxygenase (COX)-2 and induction of calcium-calmodulin kinase II (CaMKII) β were attenuated by TMB-8. KN-62, a CaMKII inhibitor, also suppressed 10,12 CLA–mediated ROS production and ERK1/2 and JNK activation. Additionally, KN-62 attenuated 10,12 CLA induction of inflammatory and integrated stress response genes, increase in prostaglandin F, and suppression of peroxisome proliferator activated receptor γ protein levels and insulin-stimulated glucose uptake. These data suggest that 10,12 CLA increases inflammation and insulin resistance in human adipocytes, in part by increasing [Ca2+]i levels, particularly calcium from the ER.  相似文献   

19.
《Luminescence》2004,19(1):1-7
Indole‐2 and 3‐carboxamides (IDs) are proposed to be selective cyclooxygenase inhibitors. Since cyclooxygenase‐1 may be involved in reactive oxygen species (ROS) production, we hypothesize that these indole derivatives have antioxidative properties. We have employed chemiluminescence (CL) and electron spin resonance (ESR) spin trapping to examine this hypothesis. We report here the results of a study of reactivity of 10 selected indole derivatives towards ROS. The following generators of ROS were applied: potassium superoxide (KO2) as a source of superoxide radicals (O2·?), the Fenton reaction (Co‐EDTA/H2O2) for hydroxyl radicals (HO·), and a mixture of alkaline aqueous H2O2 and acetonitrile for singlet oxygen (1O2). Hydroxyl radicals were detected as 5,5‐dimethyl‐1‐pyrroline‐N‐oxide (DMPO) spin adduct, whereas 2,2,6,6‐tetramethyl‐piperidine (TEMP) was used as a detector of 1O2. Using the Fenton reaction, 0.5 mmol/L IDs were found to inhibit DMPO‐?H radical formation in the range 7–37%. Furthermore the tested compounds containing the thiazolyl group also inhibited the 1O2‐dependent TEMPO radical, generated in the acetonitrile + H2O2 system. About 20% inhibition was obtained in the presence of 0.5 mmol/L IDs. 1 mmol/L IDs caused an approximately 13–70% decrease in the CL sum from the O2·? generating system (1 mmol/L). The aim of this paper is to evaluate these indole derivatives as antioxidants and their abilities to scavenge ROS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Multicellular signals are altered in the processes of both aging and neurodegenerative diseases, including Alzheimer's disease (AD). Similarities in behavioral and cellular functional changes suggest a common regulator between aging and AD that remains undetermined. Our genetics and behavioral approaches revealed the regulatory role of Akt in both aging and AD pathogenesis. In this study, we found that the activity of Akt is upregulated during aging through epidermal growth factor receptor activation by using the fruit fly as an in vivo model. Downregulation of Akt in neurons improved cell survival, locomotor activity, and starvation challenge in both aged and Aβ42‐expressing flies. Interestingly, increased cAMP levels attenuated both Akt activation‐induced early death and Aβ42‐induced learning deficit in flies. At the molecular level, overexpression of Akt promoted Notch cleavage, suggesting that Akt is an endogenous activity regulator of γ‐secretase. Taken together, this study revealed that Akt is involved in the aging process and Aβ toxicity, and manipulating Akt can restore both neuronal functions and improve behavioral activity during the processes of aging and AD pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号