首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulating evidence has reported that microRNA‐144‐3p (miR‐144‐3p) is highly related to oxidative stress and apoptosis. However, little is known regarding its role in cerebral ischemia/reperfusion‐induced neuronal injury. Herein, our results showed that miR‐144‐3p expression was significantly downregulated in neurons following oxygen–glucose deprivation and reoxygenation (OGD/R) treatment. Overexpression of miR‐144‐3p markedly reduced cell viability, promoted cell apoptosis, and increased oxidative stress in neurons with OGD/R treatment, whereas downregulation of miR‐144‐3p protected neurons against OGD/R‐induced injury. Brahma‐related gene 1 (Brg1) was identified as a potential target gene of miR‐144‐3p. Moreover, downregulation of miR‐144‐3p promoted the nuclear translocation of nuclear factor erythroid 2‐related factor 2 (Nrf2) and increased antioxidant response element (ARE) activity. However, knockdown of Brg1 significantly abrogated the neuroprotective effects of miR‐144‐3p downregulation. Overall, our results suggest that miR‐144‐3p contributes to OGD/R‐induced neuronal injury in vitro through negatively regulating Brg1/Nrf2/ARE signaling.  相似文献   

2.
MicroRNAs (miRNAs) have been suggested as pivotal regulators in the pathological process of cerebral ischemia and reperfusion injury. In this study, we aimed to investigate the role of miR‐135a in regulating neuronal survival in cerebral ischemia and reperfusion injury using an in vitro cellular model induced by oxygen‐glucose deprivation and reoxygenation (OGD/R). Our results showed that miR‐135a expression was significantly decreased in neurons with OGD/R treatment. Overexpression of miR‐135a significantly alleviated OGD/R‐induced cell injury and oxidative stress, whereas inhibition of miR‐135a showed the opposite effects. Glycogen synthase kinase‐3β (GSK‐3β) was identified as a potential target gene of miR‐135a. miR‐135a was found to inhibit GSK‐3β expression, but promote the expression of nuclear factor erythroid 2‐related factor 2 (Nrf2) and downstream signaling. However, overexpression of GSK‐3β significantly reversed miR‐135a‐induced neuroprotective effect. Overall, our results suggest that miR‐135a protects neurons against OGD/R‐induced injury through downregulation of GSK‐3β and upregulation of Nrf2 signaling.  相似文献   

3.
Daphnetin, a coumarin derivative extracted from Daphne odora var., was reported to possess a neuroprotective effect. Recently, it has been demonstrated that daphnetin attenuates ischemia/reperfusion (I/R) injury. However, the role of daphnetin in cerebral I/R injury and the potential mechanism have not been fully understood. The present study aimed to explore the regulatory roles of daphnetin on oxygen-glucose deprivation/reoxygenation (OGD/R)–induced cell injury in a model of hippocampal neurons. Our results demonstrated that daphnetin improved cell viability and reduced the lactate dehydrogenase leakage in OGD/R–stimulated hippocampal neurons. In addition, daphnetin inhibited oxidative stress and cell apoptosis in hippocampal neurons after OGD/R stimulation. Furthermore, daphnetin significantly enhanced the nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression in hippocampal neurons exposed to OGD/R. Knockdown of Nrf2 blocked the protective effect of daphnetin on OGD/R–induced hippocampal neurons. In conclusion, these findings demonstrated that daphnetin attenuated oxidative stress and neuronal apoptosis after OGD/R injury through the activation of the Nrf2/HO-1 signaling pathway in hippocampal neurons. Thus, daphnetin may be a novel therapeutic agent for cerebral I/R injury.  相似文献   

4.
Wei  Liang  Zhang  Jian-shui  Ji  Sheng-feng  Xu  Hao  Zhao  Zhao-hua  Zhang  Li  Pang  Long  Zhang  Jun-feng  Yang  Peng-bo  Ma  Hai 《Neurochemical research》2019,44(9):2182-2189

Tripartite motif 32 (TRIM32) is a member of TRIM family that plays a potential role in neural regeneration. However, the biological function of TRIM32 in cerebral ischemia reperfusion injury has not been investigated. In the present study, we evaluated the expression level of TRIM32 in hippocampal neurons following oxygen–glucose deprivation/reperfusion (OGD/R). The results showed that TRIM32 expression was significantly elevated in hippocampal neurons subjected to OGD/R as compared to the neurons cultured in the normoxia condition. To further evaluate the role of TRIM32, hippocampal neurons were transfected with TRIM32 small interfering RNA (si-TRIM32) to knock down TRIM32. We found that knockdown of TRIM32 improved cell viability of OGD/R-stimulated hippocampal neurons. Generation of reactive oxygen species was decreased, while contents of superoxide dismutase and glutathione peroxidase were increased after si-TRIM32 transfection. Knockdown of TRIM32 suppressed cell apoptosis, as proved by the increased bcl-2 expression along with decreased bax expression and caspase-3 activity. We also found that TRIM32 knockdown enhanced OGD/R-induced activation of Nrf2 signaling pathway in hippocampal neurons. Furthermore, siRNA-Nrf2 was transfected to knock down Nrf2. SiRNA-Nrf2 transfection reversed the protective effects of TRIM32 knockdown on neurons. These data suggested that knockdown of TRIM32 protected hippocampal neurons from OGD/R-induced oxidative injury through activating Nrf2 signaling pathway.

  相似文献   

5.
Cerebral ischemia/reperfusion (I/R) typically occurs after mechanical thrombectomy to treat ischemic stroke, generation of reactive oxygen species (ROS) after reperfusion may result in neuronal insult, ultimately leading to disability and death. Regulated in development and DNA damage responses 1 (REDD1) is a conserved stress response protein under various pathogenic conditions. Recent research confirms the controversial role of REDD1 in injury processes. Nevertheless, the role of REDD1 in cerebral I/R remains poorly defined. In the current study, increased expression of REDD1 was observed in neurons exposed to simulated I/R via oxygen glucose deprivation/reoxygenation (OGD/R) treatment. Knockdown of REDD1 enhanced OGD/R-inhibited cell viability, but suppressed lactate dehydrogenase (LDH) release in neurons upon OGD/R. Simultaneously, suppression of REDD1 also antagonized OGD/R-evoked cell apoptosis, Bax expression, and caspase-3 activity. Intriguingly, REDD1 depression abrogated neuronal oxidative stress under OGD/R condition by suppressing ROS, MDA generation, and increasing antioxidant SOD levels. Further mechanism analysis corroborated the excessive activation of autophagy in neurons upon OGD/R with increased expression of autophagy-related LC3 and Beclin-1, but decreased autophagy substrate p62 expression. Notably, REDD1 inhibition reversed OGD/R-triggered excessive neuronal autophagy. More importantly, depression of REDD1 also elevated the expression of p-mTOR. Preconditioning with mTOR inhibitor rapamycin engendered not only a reduction in mTOR activation, but also a reactivation of autophagy in REDD1 knockdown-neurons upon OGD/R. In addition, blocking the mTOR pathway muted the protective roles of REDD1 inhibition against OGD/R-induced neuron injury and oxidative stress. Together these data suggested that REDD1 may regulate I/R-induced oxidative stress injury in neurons by mediating mTOR-autophagy signaling, supporting a promising therapeutic strategy against brain ischemic diseases.  相似文献   

6.
Autophagic (type II) cell death has been suggested to play pathogenetic roles in cerebral ischemia. Growth arrest and DNA damage response 45b (Gadd45b) has been shown to protect against rat brain ischemia injury through inhibiting apoptosis. However, the relationship between Gadd45b and autophagy in cerebral ischemia/reperfusion (I/R) injury remains uncertain. The aim of this study is to investigate the effect of Gadd45b on autophagy. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) model of rat primary cortex neurons, and lentivirus interference used to silence Gadd45b expression. Cell viability and injury assay were performed using CCK-8 and LDH kit. Autophagy activation was monitored by expression of ATG5, LC3, Beclin-1, ATG7 and ATG3. Neuron apoptosis was monitored by expression of Bcl-2, Bax, cleaved caspase3, p53 and TUNEL assay. Neuron neurites were assayed by double immunofluorescent labeling with Tuj1 and LC3B. Here, we demonstrated that the expression of Gadd45b was strongly up-regulated at 24 h after 3 h OGD treatment. ShRNA-Gadd45b increased the expression of autophagy related proteins, aggravated OGD/R-induced neuron cell apoptosis and neurites injury. ShRNA-Gadd45b co-treatment with autophagy inhibitor 3-methyladenine (3-MA) or Wortmannin partly inhibited the ratio of LC3II/LC3I, and slightly ameliorated neuron cell apoptosis under OGD/R. Furthermore, shRNA-Gadd45b inhibited the p-p38 level involved in autophagy, but increased the p-JNK level involved in apoptosis. ShRNA-Gadd45b co-treatment with p38 inhibitor obviously induced autophagy. ShRNA-Gadd45b co-treatment with JNK inhibitor alleviated neuron cell apoptosis. In conclusion, our data suggested that Gadd45b inhibited autophagy and apoptosis under OGD/R. Gadd45b may be a common regulatory protein to control autophagy and apoptosis.  相似文献   

7.
ABSTRACT

Cerebral ischemia reperfusion (I/R) is a therapeutic strategy for ischemia; however, it usually causes injury by the aspect of inflammation and neuron apoptosis. This investigation aims to investigate the protective effects of phytic acid (IP6) for cerebral I/R injury in vitro. PC-12 cells under Oxygen and glucose deprivation/reperfusion (OGD/R) were performed to mimic cerebral I/R. IP6 was pretreated before PC-12 cells under OGD/R treatment. The data showed that IP6 activated the expression of sestrin2 in OGD/R injured PC-12 cells. IP6 inhibited OGD/R induced inflammation, oxidative stress, and apoptosis by activating sestrin2. Besides, p38 MAPK may mediate the effects of sestrin2 activated by IP6. Therefore, IP6 can be a potential drug to prevent neurological damage in cerebral I/R injury.  相似文献   

8.
It is known that ischemia/reperfusion induces neurodegeneration in the hippocampus in a subregion‐dependent manner. This study investigated the mechanism of selective resistance/vulnerability to oxygen–glucose deprivation (OGD) using mouse organotypic hippocampal cultures. Analysis of propidium iodide uptake showed that OGD‐induced duration‐ and subregion‐dependent neuronal injury. When compared with the CA1–3 subregions, dentate neuronal survival was more sensitive to inhibition of phosphatidylinositol 3‐kinase (PI3K)/Akt signaling under basal conditions. Dentate neuronal sensitivity to PI3K/Akt signaling activation was inversely related to its vulnerability to OGD‐induced injury; insulin/insulin‐like growth factor 1 pre‐treatment conferred neuroprotection to dentate neurons via activation of PI3K/Akt signaling. In contrast, CA1 and CA3 neurons were less sensitive to disruptions of endogenous PI3K/Akt signaling and protective effects of insulin/insulin‐like growth factor 1, but more vulnerable to OGD. OGD‐induced injury in CA1 was reduced by inhibition of NMDA receptor or mitogen‐activated protein kinase signaling, and was prevented by blocking NMDA receptor in the presence of insulin. The CA2 subregion was distinctive in its response to glutamate, OGD, and insulin, compared with other CA subregions. CA2 neurons were sensitive to the protective effects of insulin against OGD‐induced injury, but more resistant to glutamate. Distinctive distribution of insulin receptor β and basal phospho‐Akt was detected in our slice cultures. Our results suggest a role for insulin signaling in subregional resistance/vulnerability to cerebral ischemia.  相似文献   

9.
Lemur tyrosine kinase-2 (LMTK2), a newly identified serine/threonine kinase, is a potential regulator of cell survival and apoptosis. However, little is known about its role in regulating neuronal survival during cerebral ischemia/reperfusion injury. The present study aimed to explore the potential function of LMTK2 in regulating neuronal survival using an in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury. Herein, we found that LMTK2 expression was markedly decreased in neurons following OGD/R exposure. Gain-of-function experiments demonstrated that LMTK2 overexpression significantly improved the viability and reduced apoptosis of neurons with OGD/R-induced injury. Moreover, LMTK2 overexpression reduced the production of reactive oxygen species (ROS) in OGD/R-exposed neurons. Notably, our results elucidated that LMTK2 overexpression reinforced the activation of nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response element (ARE) antioxidant signaling associated with increased glycogen synthase kinase-3β (GSK-3β) phosphorylation. GSK-3β inhibition by its specific inhibitor significantly reversed LMTK2-inhibition-linked apoptosis and ROS production. Additionally, silencing Nrf2 partially reversed the LMTK2-overexpression-mediated neuroprotective effect in OGD/R-injured neurons. Taken together, our results demonstrated that LMTK2 overexpression alleviated OGD/R-induced neuronal apoptosis and oxidative damage by enhancing Nrf2/ARE antioxidant signaling via modulation of GSK-3β phosphorylation. Our study suggests LMTK2 is a potential target for neuroprotection during cerebral ischemia/reperfusion.  相似文献   

10.
It was previously confirmed that the apoptotic and necrotic neurons are found during the acute post‐traumatic period, suggesting the induction of apoptosis after traumatic brain injury (TBI). To further explore the involvement of apoptotic factors in TBI, an apoptosis antibody array was conducted to measure the alterations of apoptotic factors in rat brain cortex after TBI. As a result, the Neurological Severity Scale (NSS) scores after TBI were increased, and the cell morphology of the brain cortex was destructed with increased neuronal apoptosis. Furthermore, the caspase‐3 activity was increased, and the apoptotic‐related factors TNF‐α and p53 were up‐regulated in the brain cortex. More importantly, in vitro experiments demonstrated that down‐regulation of TNF‐α in oxygen‐glucose deprivation/reoxygenation (OGD/R) cells increased cell viability and decreased apoptosis and the p53 expression. These results suggested the involvement of TNF‐α–induced apoptotic signalling pathway by activating p53 in the molecular mechanism of neurological injury.  相似文献   

11.
Myocardial infarction is a major cause of death worldwide. Despite our understanding of the pathophysiology of myocardial infarction and the therapeutic options for treatment have improved substantially, acute myocardial infarction remains a leading cause of morbidity and mortality. Recent findings revealed that GRP78 could protect myocardial cells against ischemia reperfusion injury‐induced apoptosis, but the exact function and molecular mechanism remains unclear. In this study, we aimed to explore the effects of GRP78 on hypoxia/reperfusion (H/R)‐induced cardiomyocyte injury. Intriguingly, we first observed that GRP78 overexpression significantly protected myocytes from H/R‐induced apoptosis. On mechanism, our work revealed that GRP78 protected myocardial cells from hypoxia/reperfusion‐induced apoptosis via the activation of the Nrf2/HO‐1 signaling pathway. We observed the enhanced expression of Nrf2/HO‐1 in GRP78 overexpressed H9c2 cell, while GRP78 deficiency dramatically antagonized the expression of Nrf2/HO‐1. Furthermore, we found that blocked the Nrf2/HO‐1 signaling by the HO‐1 inhibitor zinc protoporphyrin IX (Znpp) significantly retrieved H9c2 cells apoptosis that inhibited by GRP78 overexpression. Taken together, our findings revealed a new mechanism by which GRP78 alleviated H/R‐induced cardiomyocyte apoptosis in H9c2 cells via the promotion of the Nrf2/HO‐1 signaling pathway.  相似文献   

12.
1‐O‐Hexyl‐2,3,5‐trimethylhydroquinone (HTHQ), a lipophilic phenolic agent, has an antioxidant activity and reactive oxygen species (ROS) scavenging property. However, the role of HTHQ on cerebral ischaemic/reperfusion (I/R) injury and the underlying mechanisms remain poorly understood. In the present study, we demonstrated that HTHQ treatment ameliorated cerebral I/R injury in vivo, as demonstrated by the decreased infarct volume ration, neurological deficits, oxidative stress and neuronal apoptosis. HTHQ treatment increased the levels of nuclear factor erythroid 2–related factor 2 (Nrf2) and its downstream antioxidant protein, haeme oxygenase‐1 (HO‐1). In addition, HTHQ treatment decreases oxidative stress and neuronal apoptosis of PC12 cells following hypoxia and reperfusion (H/R) in vitro. Moreover, we provided evidence that PC12 cells were more vulnerable to H/R‐induced oxidative stress after si‐Nrf2 transfection, and the HTHQ‐mediated protection was lost in PC12 cells transfected with siNrf2. In conclusion, these results suggested that HTHQ possesses neuroprotective effects against oxidative stress and apoptosis after cerebral I/R injury via activation of the Nrf2/HO‐1 pathway.  相似文献   

13.
Diabetes is a major risk factor for the development of stroke. Glucagon-like peptide-1 receptor (GLP-1R) agonists have been in clinical use for the treatment of diabetes and also been reported to be neuroprotective in ischemic stroke. The quinoxaline 6,7-dichloro-2-methylsulfonyl-3-N-tert- butylaminoquinoxaline (DMB) is an agonist and allosteric modulator of the GLP-1R with the potential to increase the affinity of GLP-1 for its receptor. The aim of this study was to evaluate the neuroprotective effects of DMB on transient focal cerebral ischemia. In cultured cortical neurons, DMB activated the GLP-1R, leading to increased intracellular cAMP levels with an EC50 value about 100 fold that of exendin-4. Pretreatment of neurons with DMB protected against necrotic and apoptotic cell death was induced by oxygen-glucose deprivation (OGD). The neuroprotective effects of DMB were blocked by GLP-1R knockdown with shRNA but not by GLP-1R antagonism. In C57BL/6 mice, DMB was orally administered 30 min prior to middle cerebral artery occlusion (MCAO) surgery. DMB markedly reduced the cerebral infarct size and neurological deficits caused by MCAO and reperfusion. The neuroprotective effects were mediated by activation of the GLP-1R through the cAMP-PKA-CREB signaling pathway. DMB exhibited anti-apoptotic effects by modulating Bcl-2 family members. These results provide evidence that DMB, a small molecular GLP-1R agonist, attenuates transient focal cerebral ischemia injury and inhibits neuronal apoptosis induced by MCAO. Taken together, these data suggest that DMB is a potential neuroprotective agent against cerebral ischemia.  相似文献   

14.
《Autophagy》2013,9(1):77-87
Recent reports indicate that autophagy serves as a stress response and may participate in pathophysiology of cerebral ischemia. Nicotinamide phosphoribosyltransferase (Nampt, also known as visfatin), the rate-limiting enzyme in mammalian NAD+ biosynthesis, protects against ischemic stroke through inhibiting neuronal apoptosis and necrosis. This study was taken to determine the involvement of autophagy in neuroprotection of Nampt in cerebral ischemia. Middle cerebral artery occlusion (MCAO) in rats and oxygen-glucose deprivation (OGD) in cultured cortical neurons were performed. Nampt was overexpressed or knocked-down using lentivirus-mediated gene transfer in vivo and in vitro. Immunochemistry (LC3-II), electron microscope and immunoblotting assays (LC3-II, beclin-1, mammalian target of rapamycin [mTOR], S6K1 and tuberous sclerosis complex-2 [TSC2]) were performed to assess autophagy. We found that overexpression of Nampt increased autophagy (LC3 puncta immunochemistry staining, LC3-II/beclin-1 expression and autophagosomes number) both in vivo and in vitro at 2 hours after MCAO. At the early stage of OGD, autophagy inducer rapamycin protected against neuronal injury induced by Nampt knockdown, whereas autophagy inhibitor 3-methyladenine abolished the neuroprotective effect of Nampt partly. Overexpression or knockdown of Nampt regulated the phosphorylation of mTOR and S6K1 signaling pathway upon OGD stress through enhancing phosphorylation of TSC2 at Ser1387 but not Thr1462 site. Furthermore, in cultured SIRT1-knockout neurons, the regulation of Nampt on autophagic proteins LC3-II and beclin-1 was abolished. Our results demonstrate that Nampt promotes neuronal survival through inducing autophagy via regulating TSC2-mTOR-S6K1 signaling pathway in a SIRT1-dependent manner during cerebral ischemia.  相似文献   

15.
Oxidative stress has been implicated in the development of cerebral ischemia/reperfusion (I/R) injury. Glaucocalyxin B (GLB), one of five ent-kauranoid diterpenoids, was reported to possess neuroprotective activity. However, the effect of GLB on oxygen-glucose-deprivation/reperfusion (OGD/R)-induced cell injury in PC-12 cells has not been explored. PC-12 cells was treated with various concentrations of GLB (0, 2.5, 5 and 10 μM), and cell viability was detected using the MTT assay. PC-12 cells were pretreated with the indicated concentration of GLB (2.5-10 μM, 2 hours pretreatment), and were maintained under OGD for 3 hours, followed by 24 hours of reoxygenation. Cell viability was assessed using the MTT assay. The levels of superoxide dismutase, malondialdehyde, and glutathione peroxidase were detected using commercially available ELISA Kits. Intracellular reactive oxygen species level was measured using the fluorescent probe 2′,7′-dichlorofluorescein diacetate. The levels of Bcl-2, Bax, p-Akt, Akt, p-mTOR, mTOR were detected using Western blot. Our results revealed that GLB significantly protected PC12 cells against OGD/R-induced cell injury. In addition, GLB efficiently inhibited oxidative stress and cell apoptosis in OGD/R-stimulated PC-12 cells. Mechanistic studies revealed that pretreatment with GLB could induce the activation of Akt/mTOR signaling pathway resulting in protection of OGD-treated PC12 cells. In conclusion, our data indicate for the first time that GLB protects against OGD/R-induced neuronal injury in PC-12 cells. The mechanism of the protective effect of GLB is partially associated with activation of the Akt/mTOR signaling pathway. Thus, GLB may be a potential agent for protection against cerebral I/R injury.  相似文献   

16.
Neuronal mitochondrial dynamics are disturbed after ischemic stroke. Optic atrophy 1 (OPA1) and its GTPase activity are involved in maintaining mitochondrial cristae and inner membrane fusion. This study aimed to explore the role of OMA1-mediated OPA1 cleavage (S1-OPA1) in neurons exposed to cerebral ischemia and reperfusion. After oxygen-glucose deprivation (OGD) for 60 min, we found that mitochondrial fragmentation occurred successively in the axon and soma of neurons, accompanied by an increase in S1-OPA1. In addition, S1-OPA1 overexpression significantly aggravated mitochondrial damage in neurons exposed to OGD for 60 min and 24 h after OGD/R, characterized by mitochondrial fragmentation, decreased mitochondrial membrane potential, mitochondrial cristae ultrastructural damage, increased superoxide production, decreased ATP production and increased mitochondrial apoptosis, which was inhibited by the lysine 301 to alanine mutation (K301A). Furthermore, we performed neuron-specific overexpression of S1-OPA1 in the cerebral cortex around ischemia of middle cerebral artery occlusion/reperfusion (MCAO/R) mice. The results further demonstrated in vivo that S1-OPA1 exacerbated neuronal mitochondrial ultrastructural destruction and injury induced by cerebral ischemia-reperfusion, while S1-OPA1-K301 overexpression had no effect. In conclusion, ischemia induced neuronal OMA1-mediated cleavage of OPA1 at the S1 site. S1-OPA1 aggravated neuronal mitochondrial fragmentation and damage in a GTPase-dependent manner, and participated in neuronal ischemia-reperfusion injury.Subject terms: Stroke, Cell death in the nervous system  相似文献   

17.
Shin WH  Park SJ  Kim EJ 《Life sciences》2006,79(2):130-137
Ischemic stroke results from a transient or permanent reduction in cerebral blood flow that is restricted to the territory of a major brain artery. The major pathobiological mechanisms of ischemia/reperfusion injury include excitotoxicity, oxidative stress, inflammation, and apoptosis. In the present report, we first investigated the protective effects of anthocyanins against focal cerebral ischemic injury in rats. The pretreatment of anthocyanins (300 mg/kg, p.o.) significantly reduced the brain infarct volume and a number of TUNEL positive cells caused by middle cerebral artery occlusion and reperfusion. In the immunohistochemical observation, anthocyanins remarkably reduced a number of phospho-c-Jun N-terminal kinase (p-JNK) and p53 immunopositive cells in the infarct area. Moreover, Western blotting analysis indicated that anthocyanins suppressed the activation of JNK and up-regulation of p53. Thus, our data suggested that anthocyanins reduced neuronal damage induced by focal cerebral ischemia through blocking the JNK and p53 signaling pathway. These findings suggest that the consumption of anthocyanins may have the possibility of protective effect against neurological disorders such as brain ischemia.  相似文献   

18.
TIM‐4 plays an important role in ischaemia‐reperfusion injury of liver and kidney; however, the effects of TIM‐4 on cerebral ischaemia‐reperfusion injury (IRI) are unknown. The purpose of the present study was to investigate the potential role of TIM‐4 in experimental brain ischaemia‐reperfusion injury. In this study, cerebral ischaemia reperfusion was induced by transient middle cerebral artery occlusion (MCAO) for 1 hour in C57/BL6 mice. The TIM‐4 expression was detected in vivo or vitro by real‐time quantitative polymerase chain reaction, Western blot and flow cytometric analysis. In vivo, the administration of anti‐TIM‐4 antibodies significantly suppressed apoptosis, inhibited inflammatory cells and enhanced anti‐inflammatory responses. In vitro, activated microglia exhibited reduced cellular proliferation and induced IRI injury when co‐cultured with neurons; these effects were inhibited by anti‐TIM‐4 antibody treatment. Similarly, microglia transfected with TIM‐4 siRNA and stimulated by LPS + IFN‐γ alleviated the TIM‐4‐mediated damage to neurons. Collectively, our data indicate that the inhibition of TIM‐4 can improve the inflammatory response and exerts a protective effect in cerebral ischaemia‐reperfusion injury.  相似文献   

19.
A hallmark of ischemic/reperfusion injury is a change in subunit composition of synaptic 2‐amino‐3‐(3‐hydroxy‐5‐methylisoazol‐4‐yl)propionic acid receptors (AMPARs). This change in AMPAR subunit composition leads to an increase in surface expression of GluA2‐lacking Ca2+/Zn2+ permeable AMPARs. These GluA2‐lacking AMPARs play a key role in promoting delayed neuronal death following ischemic injury. At present, the mechanism(s) responsible for the ischemia/reperfusion‐induced subunit composition switch and degradation of the GluA2 subunit remain unclear. In this study, we investigated the role of NADPH oxidase, and its importance in mediating endocytosis and subsequent degradation of the GluA2 AMPAR subunit in adult rat hippocampal slices subjected to oxygen–glucose deprivation/reperfusion (OGD/R) injury. In hippocampal slices pre‐treated with the NADPH oxidase inhibitor apocynin attenuated OGD/R‐mediated sequestration of GluA2 and GluA1 as well as prevent the degradation of GluA2. We provide compelling evidence that NADPH oxidase mediated sequestration of GluA1‐ and GluA2‐ involved activation of p38 MAPK. Furthermore, we demonstrate that inhibition of NADPH oxidase blunts the OGD/R‐induced association of GluA2 with protein interacting with C kinase‐1. In summary, this study identifies a novel mechanism that may underlie the ischemia/reperfusion‐induced AMPAR subunit composition switch and a potential therapeutic target.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号