首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effect of protriptyline on Ca2+ physiology in human hepatoma is unclear. This study explored the effect of protriptyline on [Ca2+]i and cytotoxicity in HepG2 human hepatoma cells. Protriptyline (50–150 μM) evoked [Ca2+]i rises. The Ca2+ entry was inhibited by removal of Ca2+. Protriptyline‐induced Ca2+ entry was confirmed by Mn2+‐induced quench of fura‐2 fluorescence. Except nifedipine, econazole, SKF96365, GF109203X, and phorbol 12‐myristate 13 acetate did not inhibit Ca2+ entry. Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5‐di‐tert‐butylhydroquinone (BHQ) inhibited 40% of protriptyline‐induced response. Treatment with protriptyline abolished BHQ‐induced response. Inhibition of phospholipase C (PLC) suppressed protriptyline‐evoked response by 70%. At 20–40 μM, protriptyline killed cells which was not reversed by the Ca2+ chelator 1,2‐bis(2‐aminophenoxy)ethane‐N,N,N′,N′‐tetraacetic acid‐acetoxymethyl ester (BAPTA/AM). Together, in HepG2 cells, protriptyline induced [Ca2+]i rises that involved Ca2+ entry through nifedipine‐sensitive Ca2+ channels and PLC‐dependent Ca2+ release from endoplasmic reticulum. Protriptyline induced Ca2+‐independent cell death.  相似文献   

2.
Terfenadine, an antihistamine used for the treatment of allergic conditions, affected Ca2+-related physiological responses in various models. However, the effect of terfenadine on cytosolic free Ca2+ levels ([Ca2+]i) and its related physiology in renal tubular cells is unknown. This study examined whether terfenadine altered Ca2+ signaling and caused cytotoxicity in Madin–Darby canine kidney (MDCK) renal tubular cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i. Cell viability was measured by the fluorescent reagent 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] water soluble tetrazolium-1 (WST-1) assay. Terfenadine at concentrations of 100–1000?μM induced [Ca2+]i rises concentration dependently. The response was reduced by approximately 35% by removing extracellular Ca2+. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) partly inhibited terfenadine-evoked [Ca2+]i rises. Conversely, treatment with terfenadine abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 inhibited 95% of terfenadine-induced Ca2+ release. Terfenadine-induced Ca2+ entry was supported by Mn2+-caused quenching of fura-2 fluorescence. Terfenadine-induced Ca2+ entry was partly inhibited by an activator of protein kinase C (PKC), phorbol 12-myristate 13 acetate (PMA) and by three modulators of store-operated Ca2+ channels (nifedipine, econazole, and SKF96365). Terfenadine at 200–300?μM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Together, in MDCK cells, terfenadine induced [Ca2+]i rises by evoking PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. Furthermore, terfenadine caused cell death that was not triggered by preceding [Ca2+]i rises.  相似文献   

3.
Minoxidil is clinically used to prevent hair loss. However, its effect on Ca2+ homeostasis in prostate cancer cells is unclear. This study explored the effect of minoxidil on cytosolic-free Ca2+ levels ([Ca2+]i) and cell viability in PC3 human prostate cancer cells. Minoxidil at concentrations between 200 and 800?μM evoked [Ca2+]i rises in a concentration-dependent manner. This Ca2+ signal was inhibited by 60% by removal of extracellular Ca2+. Minoxidil-induced Ca2+ influx was confirmed by Mn2+-induced quench of fura-2 fluorescence. Pre-treatment with the protein kinase C (PKC) inhibitor GF109203X, PKC activator phorbol 12-myristate 13 acetate (PMA), nifedipine and SKF96365 inhibited minoxidil-induced Ca2+ signal in Ca2+ containing medium by 60%. Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-ditert-butylhydroquinone (BHQ) in Ca2+-free medium abolished minoxidil-induced [Ca2+]i rises. Conversely, treatment with minoxidil abolished BHQ-induced [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished minoxidil-evoked [Ca2+]i rises. Overnight treatment with minoxidil killed cells at concentrations of 200–600?μM in a concentration-dependent fashion. Chelation of cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM) did not prevent minoxidil’s cytotoxicity. Together, in PC3 cells, minoxidil induced [Ca2+]i rises that involved Ca2+ entry through PKC-regulated store-operated Ca2+ channels and PLC-dependent Ca2+ release from the endoplasmic reticulum. Minoxidil-induced cytotoxicity in a Ca2+-independent manner.  相似文献   

4.
Abstract

The effect of angiotensin II (Ang II) on cytosolic Ca2+ concentrations ([Ca2+]i) in MDCK renal tubular cells was explored. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Ang II at concentrations of 5–40?µM induced a [Ca2+]i rise in a concentration-dependent manner. The response was reduced partly by removing Ca2+. Ang II evoked store-operated Ca2+ entry that was inhibited by La3+ and Gd3+. In the absence of extracellular Ca2+, incubation with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) or thapsigargin abolished Ang II-induced Ca2+ release. Inhibition of phospholipase C with U73122 abolished Ang II-induced [Ca2+]i rise. Three Ang II analogues [(ASN1,VAL5)-Ang II acetate, (SAR1,THR8)-Ang II acetate, (VAL5)-Ang II acetate] failed to induce a [Ca2+]i rise. Together, in MDCK cells, Ang II induced a [Ca2+]i rise via Ca2+ entry through store-operated Ca2+ channels and phospholipase C-dependent Ca2+ release from the endoplasmic reticulum. Moreover, Ang II’s amino acid sequence is important in its stimulatory effect on [Ca2+]i.  相似文献   

5.
Abstract

Protriptyline, a tricyclic anti-depressant, is used primarily to treat the combination of symptoms of anxiety and depression. However, the effect of protriptyline on prostate caner is unknown. This study examined whether the anti-depressant protriptyline altered Ca2+ movement and cell viability in PC3 human prostate cancer cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i. Protriptyline evoked [Ca2+]i rises concentration-dependently. The response was reduced by removing extracellular Ca2+. Protriptyline-evoked Ca2+ entry was inhibited by store-operated channel inhibitors (nifedipine, econazole and SKF96365), protein kinase C activator (phorbol 12-myristate 13 acetate, PMA) and protein kinase C inhibitor (GF109203X). Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydr-oquinone (BHQ) in Ca2+-free medium inhibited 60% of protriptyline-evoked [Ca2+]i rises. Conversely, treatment with protriptyline abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C with U73122 suppressed 50% of protriptyline-evoked [Ca2+]i rises. At concentrations of 50–70?µM, protriptyline decreased cell viability in a concentration-dependent manner; which were not reversed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, in PC3 cells, protriptyline evoked [Ca2+]i rises by inducing phospholipase C-associated Ca2+ release from the endoplasmic reticulum and other stores, and Ca2+ influx via protein kinase C-sensitive store-operated Ca2+ channels. Protriptyline caused cell death that was independent of [Ca2+]i rises.  相似文献   

6.
The effect of angiotensin 1–7 (Ang 1–7) on cytosolic Ca2+ concentrations ([Ca2+]i) in MDCK renal tubular cells was explored. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Ang 1–7 at concentrations of 10–50 µM induced a [Ca2+]i rise in a concentration-dependent manner. The response was reduced partly by removing Ca2+. Ang 1–7 evoked store operated Ca2+ entry that was inhibited by La3+ and aristolochic acid. In the absence of extracellular Ca2+, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin prevented Ang 1–7 from releasing more Ca2+. Inhibition of phospholipase C with U73122 abolished Ang 1–7-induced [Ca2+]i rise. Ang 1–7-induced [Ca2+]i rise was abolished by the angiotensin type 1 receptor antagonist losartan, but was not affected by the angiotensin type 2 receptor antagonist PD 123,319. In sum, in MDCK cells, Ang 1–7 stimulated angiotensin type 1 receptors leading to a [Ca2+]i rise that was composed of phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via phospholipase A2-sensitive store-operated Ca2+ channels.  相似文献   

7.
Effect of the carcinogen thapsigargin on human prostate cancer cells is unclear. This study examined if thapsigargin altered basal [Ca2+]i levels in suspended PC3 human prostate cancer cells by using fura-2 as a Ca2+-sensitive fluorescent probe. Thapsigargin at concentrations between 10?nM and 10 µM increased [Ca2+]i in a concentration-dependent fashion. The Ca2+ signal was reduced partly by removing extracellular Ca2+ indicating that Ca2+ entry and release both contributed to the [Ca2+]i rise. This Ca2+ influx was inhibited by suppression of phospholipase A2, but not by inhibition of store-operated Ca2+ channels or by modulation of protein kinase C activity. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-(t-butyl)-1,4-hydroquinone (BHQ) nearly abolished thapsigargin-induced Ca2+ release. Conversely, pretreatment with thapsigargin greatly reduced BHQ-induced [Ca2+]i rise, suggesting that thapsigargin released Ca2+ from the endoplasmic reticulum. Inhibition of phospholipase C did not change thapsigargin-induced [Ca2+]i rise. At concentrations of 1-10 µM, thapsigargin induced cell death that was partly reversed by chelation of Ca2+ with BAPTA/AM. Annexin V/propidium iodide staining data suggest that apoptosis was partly responsible for thapsigargin-induced cell death. Together, in PC3 human prostate cancer cells, thapsigargin induced [Ca2+]i rises by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive Ca2+ channels. Thapsigargin also induced cell death via Ca2+-dependent pathways and Ca2+-independent apoptotic pathways.  相似文献   

8.
HKC‐8 cells are a human‐derived renal proximal tubular cell line and provide a useful model system for the study of human renal cell function. In this study, we aimed to determine [Ca2+]i signalling mediated by P2 receptor in HKC‐8. Fura‐2 and a ratio imaging method were employed to measure [Ca2+]i in HKC‐8 cells. Our results showed that activation of P2Y receptors by ATP induced a rise in [Ca2+]i that was dependent on an intracellular source of Ca2+, while prolonged activation of P2Y receptors induced a rise in [Ca2+]i that was dependent on intra‐ and extracellular sources of Ca2+. Pharmacological and molecular data in this study suggests that TRPC4 channels mediate Ca2+ entry in coupling to activation of P2Y in HKC‐8 cells. U73221, an inhibitor of PI‐PLC, did not inhibit the initial ATP‐induced response; whereas D609, an inhibitor of PC‐PLC, caused a significant decrease in the initial ATP‐induced response, suggesting that P2Y receptors are coupled to PC‐PLC. Although P2X were present in HKC‐8, The P2X agonist, α,β me‐ATP, failed to cause a rise in [Ca2+]i. However, PPADS at a concentration of 100 µM inhibits the ATP‐induced rise in [Ca2+]i. Our results indicate the presence of functional P2Y receptors in HKC‐8 cells. ATP‐induced [Ca2+]i elevation via P2Y is tightly associated with PC‐PLC and TRP channel. J. Cell. Biochem. 109: 132–139, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The effect of the synthetic estrogen diethylstilbestrol (DES) on cytosolic free Ca2+ concentrations ([Ca2+]i) and cell viability was explored in Chinese hamster ovary (CHO-K1). [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. DES at concentrations ≥ 1∝ increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. In Ca2+-free medium, after pretreatment with 50∝ DES, 1∝ thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)-induced [Ca2+]i rises were abolished. Conversely, thapsigargin pretreatment abolished DES-induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not alter DES-induced [Ca2+]i rises. At a concentration of 5∝, DES increased cell viability. At concentrations of 100–200 μ M, DES decreased viability in a concentration-dependent manner. The effect of 5 and 100 μM DES on viability was partly reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′ -tetraacetic acid (BAPTA). DES-induced cell death was induced via apoptosis as demonstrated by propidium iodide staining. DES (100 μ M)-induced [Ca2+]i rises were largely inhibited by pretreatment with the estrogen receptor antagonist ICI-182,780 (100 μ M). ICI-182,780 did not affect 5 μ M DES-induced increase in viability but partly reversed 100 μ M DES-induced cell death. Collectively, in CHO-K1 cells, DES induced [Ca2+]i rises by stimulating estrogen receptors leading to Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx. DES-caused cytotoxicity was mediated by an estrogen receptor- and Ca2+-dependent pathway.  相似文献   

10.
The effect of the natural product diindolylmethane on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells was explored. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Diindolylmethane at concentrations of 20–50 µM induced [Ca2+]i rise in a concentration-dependent manner. The response was reduced partly by removing Ca2+. Diindolylmethane-evoked Ca2+ entry was suppressed by nifedipine, econazole, SK&F96365, protein kinase C modulators and aristolochic acid. In the absence of extracellular Ca2+, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished diindolylmethane-induced [Ca2+]i rise. Incubation with diindolylmethane also inhibited thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 reduced diindolylmethane-induced [Ca2+]i rise. At concentrations of 50–100 µM, diindolylmethane killed cells in a concentration-dependent manner. This cytotoxic effect was not altered by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Annexin V/PI staining data implicate that diindolylmethane (50 and 100 µM) induced apoptosis in a concentration-dependent manner. In conclusion, diindolylmethane induced a [Ca2+]i rise in PC3 cells by evoking phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via phospholipase A2-sensitive store-operated Ca2+ channels. Diindolylmethane caused cell death in which apoptosis may participate.  相似文献   

11.
Alcohol is a potent neuroteratogen that can trigger neuronal death in the developing brain. However, the mechanism underlying this alcohol‐induced neuronal death is not fully understood. Utilizing primary cultures of cerebellar granule neurons (CGN), we tested the hypothesis that the alcohol‐induced increase in intracellular calcium [Ca2+]i causes the death of CGN. Alcohol induced a dose‐dependent (200–800 mg/dL) neuronal death within 24 h. Ratiometric Ca2+ imaging with Fura‐2 revealed that alcohol causes a rapid (1–2 min), dose‐dependent increase in [Ca2+]i, which persisted for the duration of the experiment (5 or 7 min). The alcohol‐induced increase in [Ca2+]i was observed in Ca2+‐free media, suggesting intracellular Ca2+ release. Pre‐treatment of CGN cultures with an inhibitor (2‐APB) of the inositol‐triphosphate receptor (IP3R), which regulates Ca2+ release from the endoplasmic reticulum (ER), blocked both the alcohol‐induced rise in [Ca2+]i and the neuronal death caused by alcohol. Similarly, pre‐treatment with BAPTA/AM, a Ca2+‐chelator, also inhibited the alcohol‐induced surge in [Ca2+]i and prevented neuronal death. In conclusion, alcohol disrupts [Ca2+]i homeostasis in CGN by releasing Ca2+ from intracellular stores, resulting in a sustained increase in [Ca2+]i. This sustained increase in [Ca2+]i may be a key determinant in the mechanism underlying alcohol‐induced neuronal death.  相似文献   

12.
Abstract

Resveratrol is a natural compound that affects cellular Ca2+ homeostasis and viability in different cells. This study examined the effect of resveratrol on cytosolic free Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i and WST-1 was used to measure viability. Resveratrol-evoked [Ca2+]i rises concentration-dependently. The response was reduced by removing extracellular Ca2+. Resveratrol-evoked Ca2+ entry was not inhibited by nifedipine, econazole, SKF96365 and the protein kinase C inhibitor GF109203X, but was nearly abolished by the protein kinase C activator phorbol 12-myristate 13 acetate. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone decreased resveratrol-evoked rise in [Ca2+]i. Conversely, treatment with resveratrol inhibited BHQ-evoked rise in [Ca2+]i. Inhibition of phospholipase C with U73122 did not alter resveratrol-evoked rise in [Ca2+]i. Previous studies showed that resveratrol between 10 and 100?µM induced cell death in various cancer cell types including PC3 cells. However, in this study, resveratrol (1–10?μM) increased cell viability, which was abolished by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid-acetoxymethyl ester (BAPTA/AM). Therefore, it is suggested that in PC3 cells, resveratrol had a dual effect on viability: at low concentrations (1–10?µM) it induced proliferation, whereas at higher concentrations it caused cell death. Collectively, our data suggest that in PC3 cells, resveratrol-induced rise in [Ca2+]i by evoking phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ entry, via protein kinase C-regulated mechanisms. Resveratrol at 1–10?µM also caused Ca2+-dependent cell proliferation.  相似文献   

13.
Liang WZ  Lu CH 《Life sciences》2012,90(17-18):703-711
AimsThis study examined whether the essential oil component carvacrol altered cytosolic free Ca2+ level ([Ca2+]i) and viability in human glioblastoma cells.Main methodsThe Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Cell viability was measured by detecting reagent WST-1. Apoptosis and reactive oxygen species (ROS) were detected by flow cytometry.Key findingsCarvacrol at concentrations of 400–1000 μM induced a [Ca2+]i rise in a concentration-dependent fashion. The response was decreased partially by removal of extracellular Ca2+. Carvacrol-induced Ca2+ signal was not altered by nifedipine, econazole, SK&;F96365, and protein kinase C activator phorbol myristate acetate (PMA), but was inhibited by the protein kinase C inhibitor GF109203X. When extracellular Ca2+ was removed, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) abolished carvacrol-induced [Ca2+]i rise. Incubation with carvacrol also abolished thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished carvacrol-induced [Ca2+]i rise. At concentrations of 200–800 μM, carvacrol killed cells in a concentration-dependent manner. This cytotoxic effect was not changed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N–-tetraacetic acid/acetoxy methyl (BAPTA/AM). Annexin V/propidium iodide staining data suggest that carvacrol (200, 400 and 600 μM) induced apoptosis in a concentration-dependent manner. At concentrations of 200, 400 and 600 μM, carvacrol induced production of ROS.SignificanceIn human glioblastoma cells, carvacrol induced a [Ca2+]i rise by inducing phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via protein kinase C-sensitive, non store-operated Ca2+ channels. Carvacrol induced cell death that might involve ROS-mediated apoptosis.  相似文献   

14.
Abstract

Clotrimazole is an antimycotic imidazole derivative that interferes with cellular Ca2+ homeostasis. This study examined the effect of clotrimazole on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in HA59T human hepatoma cells. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Clotrimazole induced [Ca2+]i rises in a concentration-dependent manner. The response was reduced by removing extracellular Ca2+. Clotrimazole-evoked Ca2+ entry was suppressed by store-operated channel inhibitors (nifedipine, econazole and SK&F96365) and protein kinase C modulators (GF109203X and phorbol, 12-myristate, 13-acetate). In Ca2+-free medium, incubation with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone abolished clotrimazole-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished clotrimazole-induced [Ca2+]i rise. At 10–40?µM, clotrimazole inhibited cell viability, which was not reversed by chelating cytosolic Ca2+. Clotrimazole at 10 and 30?µM also induced apoptosis. Collectively, in HA59T cells, clotrimazole-induced [Ca2+]i rises by evoking phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via store-operated Ca2+ channels. Clotrimazole also caused apoptosis.  相似文献   

15.
The effects of econazole, an antifungal drug applied for treatment of keratitis and mycotic corneal ulcer, on cytosolic-free Ca2+ concentrations ([Ca2+]i) and viability of corneal cells was examined by using SIRC rabbit corneal epithelial cells as model. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Econazole at concentrations ≥ 1 µM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The econazole-induced Ca(2+) influx was insensitive to L-type Ca2+ channel blockers and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 20 µM econazole, [Ca2+]i rises induced by 1 µM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) were abolished. Conversely, thapsigargin pretreatment also abolished econazole-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 µM U73122 did not change econazole-induced [Ca2+]i rises. At concentrations between 10 and 80 µM, econazole killed cells in a concentration-dependent manner. The cytotoxic effect of 20 µM econazole was not reversed by prechelating cytosolic Ca2+ with BAPTA. This shows that in SIRC cells econazole induces [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from unknown pathways. Econazole-caused cytotoxicity was independent from a preceding [Ca2+]i rise.  相似文献   

16.
The purpose of this study was to explore the effect of tamoxifen on cytosolic free Ca2+ concentrations ([Ca2+]i) and cell viability in OC2 human oral cancer cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Tamoxifen at concentrations above 2 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The tamoxifen-induced Ca2+ influx was sensitive to blockade of L-type Ca2+ channel blockers but insensitive to the estrogen receptor antagonist ICI 182,780 and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), tamoxifen-induced [Ca2+]i rises were substantially inhibited; and conversely, tamoxifen pretreatment inhibited a part of thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 μM U73122 did not change tamoxifen-induced [Ca2+]i rises. At concentrations between 10 and 50 μM tamoxifen killed cells in a concentration-dependent manner. The cytotoxic effect of 23 μM tamoxifen was not reversed by prechelating cytosolic Ca2+ with BAPTA. Collectively, in OC2 cells, tamoxifen induced [Ca2+]i rises, in a nongenomic manner, by causing Ca2+ release from the endoplasmic reticulum, and Ca2+ influx from L-type Ca2+ channels. Furthermore, tamoxifen-caused cytotoxicity was not via a preceding [Ca2+]i rise.  相似文献   

17.
《Cell calcium》2016,59(6):577-588
Rises in cytosolic Ca2+ concentration ([Ca2+]cyt) are central in platelet activation, yet many aspects of the underlying mechanisms are poorly understood. Most studies examine how experimental manipulations affect agonist-evoked rises in [Ca2+]cyt, but these only monitor the net effect of manipulations on the processes controlling [Ca2+]cyt (Ca2+ buffering, sequestration, release, entry and removal), and cannot resolve the source of the Ca2+ or the transporters or channels affected. To investigate the effects of protein kinase C (PKC) on platelet Ca2+ signalling, we here monitor Ca2+ flux around the platelet by measuring net Ca2+ fluxes to or from the extracellular space and the intracellular Ca2+ stores, which act as the major sources and sinks for Ca2+ influx into and efflux from the cytosol, as well as monitoring the cytosolic Na+ concentration ([Na+]cyt), which influences platelet Ca2+ fluxes via Na+/Ca2+ exchange. The intracellular store Ca2+ concentration ([Ca2+]st) was monitored using Fluo-5N, the extracellular Ca2+ concentration ([Ca2+]ext) was monitored using Fluo-4 whilst [Ca2+]cyt and [Na+]cyt were monitored using Fura-2 and SFBI, respectively. PKC inhibition using Ro-31-8220 or bisindolylmaleimide I potentiated ADP- and thrombin-evoked rises in [Ca2+]cyt in the absence of extracellular Ca2+. PKC inhibition potentiated ADP-evoked but reduced thrombin-evoked intracellular Ca2+ release and Ca2+ removal into the extracellular medium. SERCA inhibition using thapsigargin and 2,5-di(tert-butyl) l,4-benzohydroquinone abolished the effect of PKC inhibitors on ADP-evoked changes in [Ca2+]cyt but only reduced the effect on thrombin-evoked responses. Thrombin evokes substantial rises in [Na+]cyt which would be expected to reduce Ca2+ removal via the Na+/Ca2+ exchanger (NCX). Thrombin-evoked rises in [Na+]cyt were potentiated by PKC inhibition, an effect which was not due to altered changes in non-selective cation permeability of the plasma membrane as assessed by Mn2+ quench of Fura-2 fluorescence. PKC inhibition was without effect on thrombin-evoked rises in [Ca2+]cyt following SERCA inhibition and either removal of extracellular Na+ or inhibition of Na+/K+-ATPase activity by removal of extracellular K+ or treatment with digoxin. These data suggest that PKC limits ADP-evoked rises in [Ca2+]cyt by acceleration of SERCA activity, whilst rises in [Ca2+]cyt evoked by the stronger platelet activator thrombin are limited by PKC through acceleration of both SERCA and Na+/K+-ATPase activity, with the latter limiting the effect of thrombin on rises in [Na+]cyt and so forward mode NCX activity. The use of selective PKC inhibitors indicated that conventional and not novel PKC isoforms are responsible for the inhibition of agonist-evoked Ca2+ signalling.  相似文献   

18.
The effect of ketoconazole on cytosolic free Ca2 + concentrations ([Ca2 +]i) and proliferation has not been explored in corneal cells. This study examined whether ketoconazole alters Ca2 + levels and causes cell death in SIRC rabbit corneal epithelial cells. [Ca2 +]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Ketoconazole at concentrations of 5 μ M and above increased [Ca2 +]i in a concentration-dependent manner. The Ca2 + signal was reduced partly by removing extracellular Ca2 +. The ketoconazole-induced Ca2 + influx was insensitive to L-type Ca2 + channel blockers and protein kinase C modulators. In Ca2 +-free medium, after pretreatment with 50 μ M ketoconazole, thapsigargin-(1 μ M)-induced [Ca2 +]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished ketoconazole-induced [Ca2 +]i rises. Inhibition of phospholipase C with 2 μ M U73122 did not change ketoconazole-induced [Ca2 +]i rises. At concentrations between 5 and 100 μ M, ketoconazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50 μ M ketoconazole was not reversed by prechelating cytosolic Ca2 + with BAPTA. In summary, in corneal cells, ketoconazole-induced [Ca2 +]i rises by causing Ca2 + release from the endoplasmic reticulum and Ca2 + influx from unknown pathways. Furthermore, the cytotoxicity induced by ketoconazole was not caused via a preceding [Ca2 +]i rise.  相似文献   

19.
Phospholipase Cζ (PLCζ) is a sperm-specific PLC capable of causing repetitive intracellular Ca2+ ([Ca2+]i) release ([Ca2+]i oscillations) in mammalian eggs. Accumulating evidence suggests that PLCζ is the sperm factor responsible for inducing egg activation. Nevertheless, some sperm fractions devoid of 72-kDa PLCζ showed [Ca2+]i oscillation-inducing and PLCζ-like PLC activity (Kurokawa et al., (2005) Dev. Biol. 285, 376-392). Here, we report that PLCζ remains functional after proteolytic cleavage at the X-Y linker region. We found that N-terminal (33 and 37 kDa) and C-terminal fragments (27 kDa), presumably the result of PLCζ cleavage at the X-Y linker region, were present in fresh sperm as well as in sperm extracts and remained associated as functional complexes. Protease V8 cleaved 72-kDa PLCζ into 33/37 and 27 kDa fragments, while PLC activity and [Ca2+]i oscillation-inducing activity persisted until degradation of the fragments. Immunodepletion or affinity depletion of these fragments abolished PLC activity and [Ca2+]i oscillation-inducing activity from sperm extracts. Lastly, co-expression of cRNAs encoding residues 1-361 and 362-647 of mouse PLCζ, mimicking cleavage at the X-Y linker region, induced [Ca2+]i oscillations and embryo development in mouse eggs. Our results support the hypothesis that PLCζ is the sole mammalian sperm factor and that its linker region may have important regulatory functions during mammalian fertilization.  相似文献   

20.
Using a two-wave fluorescence probe, Fura-2, we studied changes in the intracellular concentration of calcium ions ([Ca2+]i) resulting from activation of muscarinic and purine receptors in single myocytes of the guinea-pig small intestine. Applications of the respective agonists added to the normal Krebs solution (1.0, 10.0, and 100.0 μM carbachol, CCh, as well as 10.0 and 100.0 μM ATP) induced a rise in the [Ca2+]i. Carbachol evoked an increase in the [Ca2+]i, including two components (a rapid and a plateaulike), while ATP under analogous conditions led only to a short-lasting rise in the [Ca2+]i. Transients induced by CCh or ATP applied in different concentrations, which exceeded a certain level, did not significantly differ from each other in their amplitudes, i.e., they were generated according to an all-or-none principle. In the nominally Ca-and Mg-free solution, CCh and ATP induced only rapid increases in the [Ca2+]i in myocytes. The absence of the slow component in the [Ca2+]i elevation upon the action of CCh under such conditions indicates that the effect of ATP, as compared with that of CCh, is not related to activation of the entry of Ca2+ ions into cells through voltage-operated calcium channels. After the addition of CCh, repeated application of CCh or ATP induced no effect, while application of CCh after the addition of ATP initiated a rise in the [Ca2+]i. These data show that intracellular calcium stores are depleted completely upon the action of CCh, while they are depleted only partially after the action of ATP. An inhibitor of phospholipase C (PLC), U-73122 (5.0 μM), completely blocked rises in the [Ca2+]i induced by both CCh and ATP; therefore, the release of Ca2+ ions from the intracellular calcium stores after application of these agonists is mediated by PLC. We hypothesize that the difference in the release of Ca2+ ions from the intracellular stores observed in our experiments upon activation of choline and purine receptors (partial and complete depletion of the stores upon the action of ATP and CCh, respectively) is responsible for the opposite functional effects of the above-mentioned neurotransmitters on smooth muscles. Neirofiziologiya/Neurophysiology, Vol. 38, No. 1, pp. 3–10, January–February, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号