首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a hybrid dual‐wavelength optoacoustic and ultrasound bio‐microscope capable of rapid transcranial visualization of morphology and oxygenation status of large‐scale cerebral vascular networks. Imaging of entire cortical vasculature in mice is achieved with single capillary resolution and complemented by simultaneously acquired pulse‐echo ultrasound microscopy scans of the mouse skull. The new approach holds potential to facilitate studies into neurological and vascular abnormalities of the brain. Further details can be found in the article by Johannes Rebling, Héctor Estrada, Sven Gottschalk, et al. ( e201800057 ).

  相似文献   


2.
Third Harmonic Generation (THG) microscopy as a non‐invasive, label free imaging methodology, allows linkage of lipid profiles with various breast cancer cells. The collected THG signal arise mostly from the lipid droplets and the membrane lipid bilayer. Quantification of THG signal can accurately distinguish HER2‐positive cells. Further analysis using Fourier transform infrared (FTIR) spectra reveals cancer‐specific profiles, correlating lipid raft‐corresponding spectra to THG signal, associating thus THG to chemical information.

THG imaging of a cancer cell.  相似文献   


3.
Two‐photon microscopy is the tool of choice for fluorescence imaging of deep tissues with high resolution, but can be limited in three‐dimensional acquisition speed and penetration depth. In this work, these issues are addressed by using an acoustic optofluidic lens capable of ultrafast beam shaping on a pixel basis. Driving the lens with different phase profiles enables high‐speed volumetric imaging, or enhanced signal‐to‐background for deeper penetration. Further details can be found in the article by Simonluca Piazza et al. ( e201700050 )

  相似文献   


4.
This study provides a simple method to detect human distal radius bone density based on near infrared (NIR) imaging. The information of bone mineral density can be measured by transluminational optical bone densitometric system. Compared to dual‐energy x‐ray absorptiometry (DXA) results in clinical trial, NIR images show a strong correlation to DXA. Further details can be found in the article by Chun Chung, Yu‐Pin Chen, Tsai‐Hsueh Leu, and Chia‐Wei Sun ( e201700342 ).

  相似文献   


5.
Congenital cardiovascular defects are the leading cause of birth defect related death. It has been hypothesized that fluid mechanical forces of embryonic blood flow affect cardiovascular development and play a role in congenital malformations. Studies in small animal embryos can improve our understanding of congenital malformations and can lead to better treatment. We present a feasibility study in which high‐resolution optical coherence tomography (OCT) and computational fluid dynamics (CFD) are combined to provide quantitative analysis of the embryonic flow mechanics and the associated anatomy in a small animal model.

  相似文献   


6.
Protein secondary structural alteration in the serum sample as induced by colitis has been demonstrated via the spectral fitting. Using DSS mouse models of acute colitis and IL10‐/‐ for chronic colitis, a significant difference in the integral ratio of Gaussian energy bands representing α‐helix and β‐pleated sheet structures were obtained. Further details can be found in the article by Jitto Titus et al. ( e201700057 ).

  相似文献   


7.
In vivo multiphoton imaging was used to map changes in hepatobiliary metabolism in liver fibrosis (left column) and hepatocellular carcinoma (right column). The top row shows the maps of kinetic rate constant of the uptake and esterase processing while the bottom row shows that of bile canalicular excretion of xenobiotics. Further details can be found in the article by Chih‐Ju Lin, Sheng‐Lin Lee, Wei‐Hsiang Wang, et al. ( e201700338 ).

  相似文献   


8.
SECTR is a novel multimodal imaging platform for combined volumetric optical coherence tomography (OCT) and en face spectrally encoded reflectometry (SER). The authors demonstrate three‐dimensional motion‐tracking with millisecond temporal and micron spatial resolution using complementary data from OCT and SER, and preliminary algorithms and results showing real‐time image aiming and multi‐volumetric mosaicking for reconstruction of wide‐field composites. The image shows a noninvasively imaged nine‐field mosaic of in vivo human retina and depth‐resolved visualization of tissue microstructures. Further details can be found in the article by Mohamed T. El‐Haddad, Ivan Bozic, and Yuankai K. Tao ( e201700268 )

  相似文献   


9.
The cover shows the image enhancement of biological tissues provided by the Indices of Polarimetric Purity (IPPs). By measuring the Mueller matrix of a biological sample, using an imaging polarimeter, the IPPs are calculated. They are polarimetric indicators providing further synthetization of depolarizing samples and leading to enhanced image contrast for some biological structures. Once the IPPs are calculated, a pseudo‐colouring technique is applied for higher visualization. Further details can be found in the article by Albert Van Eeckhout et al. ( e201700189 )

  相似文献   


10.
Germanium vs Silicon: All‐dielectric nanoparticles provides the heat resistance for proteins under light‐induced heating. Further details can be found in the article by Andrei A. Krasilin et al. ( e201700322 )

  相似文献   


11.
Based on multicolor quantum dots (QDs) labeling, the joint tagging assisted super‐resolution radial fluctuation (JT‐SRRF) nanoscopy achieves high‐fidelity super‐resolution imaging of subcellular microtubules and fast live‐cell parallel tracking of cholera toxin subunit B (CTB) induced lipid clusters spatially distributed below the optical diffraction limit. This method paves the way for fast high‐density parallel tracking, which is especially beneficial for the investigation of the intensive dynamics in live‐cell applications. Further details can be found in the article by Zhiping Zeng, Jing Ma, Peng Xi, and Canhua Xu ( e201800020 ).

  相似文献   


12.
Bladder cancer is among the most common cancers in the UK and conventional detection techniques suffer from low sensitivity, low specificity, or both. Recent attempts to address the disparity have led to progress in the field of autofluorescence as a means to diagnose the disease with high efficiency, however there is still a lot not known about autofluorescence profiles in the disease. The multi‐functional diagnostic system “LAKK‐M” was used to assess autofluorescence profiles of healthy and cancerous bladder tissue to identify novel biomarkers of the disease. Statistically significant differences were observed in the optical redox ratio (a measure of tissue metabolic activity), the amplitude of endogenous porphyrins and the NADH/porphyrin ratio between tissue types. These findings could advance understanding of bladder cancer and aid in the development of new techniques for detection and surveillance.

  相似文献   


13.
Tissue autofluorescence provides fluorescence lifetime contrast between acellular tissue and that containing newly seeded cells. Fiber‐based fluorescence lifetime imaging (FLIm) can be used for tracking recellularization of engineered vascular grafts and potential matrix remodeling at large scale, without compromising sample integrity. FLIm cellular contrast was verified in a subset of samples seeded with eGFP‐labelled cells. Results suggests fiberbased FLIm is a suitable tool for monitoring recellularization of engineered tissue nondestructively. Further details can be found in the article by Alba Alfonso‐Garcia, Jeny Shklover, Benjamin E. Sherlock, et al. ( e201700391 ).

  相似文献   


14.
We disclose a theranostic device for performing image‐guided riboflavin/UV‐A corneal cross‐linking. The device determines treatment efficacy by real time monitoring of riboflavin concentration in the corneal stroma. The study shows efficacy of the device in eye bank human donor tissues. Further details can be found in the article by Giuseppe Lombardo et al. ( e201800028 )

  相似文献   


15.
Photoconversion, an irreversible shift in a fluorophore emission spectrum after light exposure, is a powerful tool for marking cellular and subcellular compartments and tracking their dynamics in vivo. This paper reports on the photoconversion properties of Di‐8‐ANEPPS, a commercially available membrane dye. When illuminated with near‐infrared femtosecond laser pulses, Di‐8‐ANEPPS undergoes multiphoton photoconversion as indicated by the supralinear dependence of the conversion rate ρpc on the incident power (), and by the ability to photoconvert a thin optical section in a three‐dimensional matrix. The characteristic emission spectrum changed from red to blue, and ratiometric analysis on single cells in vitro revealed a 65‐fold increase in the blue to red wavelength ratio after photoconversion. The spectral shift is preserved in vivo for hours, making Di‐8‐ANEPPS a useful dye for intravital cell marking and tracking applications.

  相似文献   


16.
A label‐free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10–8 RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm–2, is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL–1 range.

  相似文献   


17.
Trans‐scleral iontophoresis device was shown to be effective for in‐situ delivery of lutein to the retina of human donor eyes. After treatment, Resonance Raman Spectroscopy measurements demonstrated that lutein greatly enriched the inner sclera, choroid and retina. Clinical studies are going to prove if the methodology would be a valuable approach to enrich the human macular pigment and prevent local oxidative damage in patients at risk of AMD progression. Further details can be found in the article by Marco Lombardo et al. ( e201700095 ).

  相似文献   


18.
Label‐free optical nano‐imaging of dendritic structures and intracellular granules in biological cells is demonstrated using a bright and homogeneous nanometric light source. The optical nanometric light source is excited using a focused electron beam. A zinc oxide (ZnO) luminescent thin film was fabricated by atomic layer deposition (ALD) to produce the nanoscale light source. The ZnO film formed by ALD emitted the bright, homogeneous light, unlike that deposited by another method. The dendritic structures of label‐free macrophage receptor with collagenous structure‐expressing CHO cells were clearly visualized below the diffraction limit. The inner fiber structure was observed with 120 nm spatial resolution. Because the bright homogeneous emission from the ZnO film suppresses the background noise, the signal‐to‐noise ratio (SNR) for the imaging results was greater than 10. The ALD method helps achieve an electron beam excitation assisted microscope with high spatial resolution and high SNR.

  相似文献   


19.
《Plant Species Biology》2017,32(4):261-262
Cover Image Flowering individuals of Solidago virgaurea. Photographed by Koichi Takahashi. Mt. Norikura, Honshu, Japan

  相似文献   


20.
For the first time, spatially resolved quantitative metrics of light scattering recovered with sub‐diffusive spatial frequency domain imaging (sd‐SFDI) are shown to be sensitive to changes in intratumoral morphology and viability by direct comparison to histopathological analysis. Two freshly excised subcutaneous murine tumor cross‐sections were measured with sd‐SFDI, and recovered optical scatter parameter maps were co‐registered to whole mount histology. Unique clustering of the optical scatter parameters vs. γ (i.e. diffuse scattering vs. relative backscattering) evaluated at a single wavelength showed complete separation between regions of viable tumor, aggresive tumor with stromal growth, varying levels of necrotic tumor, and also peritumor muscle. The results suggest that with further technical development, sd‐SFDI may represent a non‐destructive screening tool for analysis of excised tissue or a non‐invasive approach to investigate suspicious lesions without the need for exogenous labels or spectrally resolved imaging.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号