首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We used the synthesized dinaphthylmethane (Hdnm) ligand whose absorption extends to the visible‐light wavelength, to prepare a family of ternary lanthanide complexes, named as [Ln(dnm)3phen] (Ln = Sm, Nd, Yb, Er, Tm, Pr). The properties of these complexes were investigated by Fourier transform infrared (FT‐IR) spectroscopy, diffuse reflectance (DR) spectroscopy, thermogravimetric analyses, and excitation and emission spectroscopy. Generally, excitation with visible light is much more advantageous than UV excitation. Importantly, upon excitation with visible light (401–460 nm), the complexes show characteristic visible (Sm3+) as well as near‐infrared (Sm3+, Nd3+, Yb3+, Er3+, Tm3+, Pr3+) luminescence of the corresponding lanthanide ions, attributed to the energy transfer from the ligands to the lanthanide ions, an antenna effect. Now, using these near‐infrared luminescent lanthanide complexes, the luminescent spectral region from 800 to 1650 nm, can be covered completely, which is of particular interest for biomedical imaging applications, laser systems, and optical amplification applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Optical fibers have recently attracted a noticeable interest for biomedical applications because they provide a minimally invasive method for in vivo sensing, imaging techniques, deep‐tissue photodynamic therapy or optogenetics. The silica optical fibers are the most commonly used because they offer excellent optical properties, and they are readily available at a reasonable price. The fused silica is a biocompatible material, but it is not bioresorbable so it does not decompose in the body and the fibers must be ex‐planted after in vivo use and their fragments can present a considerable risk to the patient when the fiber breaks. In contrast, optical fibers made of phosphate glasses can bring many benefits because such glasses exhibit good transparency in ultraviolet‐visible and near‐infrared regions, and their solubility in water can be tailored by changing the chemical composition. The bioresorbability and toxicity of phosphate glass–based optical fibers were tested in vivo on male laboratory rats for the first time. The fiber was spliced together with a standard graded‐index multi‐mode fiber pigtail and an optical probe for in vitro pH measurement was prepared by the immobilization of a fluorescent dye on the fiber tip by a sol‐gel method to demonstrate applicability and compatibility of the fiber with common fiber optics.   相似文献   

3.
Full‐spectrum solar energy utilization is the ultimate goal of high‐performance photovoltaic devices. However, the present approaches to enhance sunlight harvesting in the cost‐effective quantum dot–sensitized solar cells mainly focus on the use of high‐frequency photons with the long‐wavelength sunlight being left behind. Here, a full‐spectrum solar cell architecture is proposed and the near‐infrared light–enhanced cell performance is demonstrated with a plasmonic and electrocatalytic dual‐function CuS nanostructure electrode. In the CdS/CdSe quantum dot–sensitized solar cells, an enhancement factor as high as 15% in power conversion efficiency is obtained for the device with near‐infrared part of 1‐sun light irradiating from the counter electrode side and ultraviolet–visible part incidence from the photoanode side. Electrochemical characterizations show that the enhanced electrocatalytic activity toward polysulfide reduction is attributed to the better device performance. This may be due to the plasmon‐induced photothermal effect and interfacial energy transfer from the counter electrode under the near‐infrared light, which accelerate the preceding chemical reactions for polysulfide reduction and improve the charge transfer at the electrode–electrolyte interface. This strategy provides an alternative way to achieve a full‐spectrum liquid‐junction solar cell via the integration of plasmon‐enhanced electrocatalysis into photovoltaics.  相似文献   

4.
Understanding near infrared light propagation in tissue is vital for designing next generation optical brain imaging devices. Monte Carlo (MC) simulations provide a controlled mechanism to characterize and evaluate contributions of diverse near infrared spectroscopy (NIRS) sensor configurations and parameters. In this study, we developed a multilayer adult digital head model under both healthy and clinical settings and assessed light‐tissue interaction through MC simulations in terms of partial differential pathlength, mean total optical pathlength, diffuse reflectance, detector light intensity and spatial sensitivity profile of optical measurements. The model incorporated four layers: scalp, skull, cerebrospinal‐fluid and cerebral cortex with and without a customizable lesion for modeling hematoma of different sizes and depths. The effect of source‐detector separation (SDS) on optical measurements' sensitivity to brain tissue was investigated. Results from 1330 separate simulations [(4 lesion volumes × 4 lesion depths for clinical +3 healthy settings) × 7 SDS × 10 simulation = 1330)] each with 100 million photons indicated that selection of SDS is critical to acquire optimal measurements from the brain and recommended SDS to be 25 to 35 mm depending on the wavelengths to obtain optical monitoring of the adult brain function. The findings here can guide the design of future NIRS probes for functional neuroimaging and clinical diagnostic systems.   相似文献   

5.
Previous studies on spinal cord injury (SCI) have confirmed that percutaneous photobiomodulation (PBM) therapy can ameliorate immunoinflammatory responses at sites of injury, accelerate nerve regeneration, suppress glial scar formation and promote the subsequent recovery of locomotor function. The current study was performed to evaluate a large‐animal model employing implanted optical fibers to accurately irradiate targeted spinal segments. The method's feasibility and irradiation parameters that do not cause phototoxic reaction were determined, and the methodology of irradiating the spinal cord with near‐infrared light was investigated in detail. A diffusing optical fiber was implanted above the T9 spinal cord of Bama miniature pigs and used to transfer near‐infrared light (810 nm) onto the spinal cord surface. After daily irradiation with 200, 300, 500 or 1000 mW for 14 days, both sides of the irradiated area of the spinal cord were assessed for temperature changes. The condition of the spinal cord and the position of optical fiber were investigated by magnetic resonance imaging (MRI), and different parameters indicating temperature increases or phototoxicity were measured on the normal spinal cord surface due to light irradiation (ie, heat shock responses, inflammatory reactions and neuronal apoptosis), and the animals' lower‐limb neurological function and gait were assessed during the irradiation process. The implanted device was stable inside the freely moving animals, and light energy could be directly projected onto the spinal cord surface. The screening of different irradiation parameters preliminary showed that direct irradiation onto the spinal cord surface at 200 and 300 mW did not significantly increase the temperature, stress responses, inflammatory reactions and neural apoptosis, whereas irradiation at 500 mW slightly increased these parameters, and irradiation at 1000 mW induced a significant temperature increase, heat shock, inflammation and apoptosis responses. HE staining of spinal cord tissue sections did not reveal any significant structural changes of the tissues compared to the control group, and the neurological function and gait of all irradiated animals were normal. In this study, we established an in‐vivo optical fiber implantation method, which might be safe and stable and could be used to directly project light energy onto the spinal cord surface. This study might provide a new perspective for clinical applications of PBM in acute SCI.  相似文献   

6.
Amyloid fibrils are a well‐recognized hallmark of neurodegeneration. A common approach to detect amyloid fibrils is staining with organic molecules and monitoring optical properties using fluorescence spectroscopy. However, the structural diversity of amyloids necessitates new sensitive methods and probes that can be reliably used to characterize them. Here, Coumarin 307 is applied for lysozyme fibrils detection by observation of laser action in the process of two‐photon excited stimulated emission. It is shown that the lasing threshold and spectrum significantly depend on the adopted structure (α‐helix or β‐sheet) of the lysozyme protein, whereas fluorescence spectrum is insensitive to the protein structure. The applications of coherent stimulated emission light that can be emitted deep inside a scattering medium can be particularly promising for imaging and therapeutic purposes in the neurodegeneration field. Two‐photon excitation with the near‐infrared light, which allows the deepest penetration of tissues, is an important advantage of the method.  相似文献   

7.
There are a limited number of methods to guide and confirm the placement of a peripherally inserted central catheter (PICC) at the cavoatrial junction. The aim of this study was to design, test and validate a dual‐wavelength, diode laser‐based, single optical fiber instrument that would accurately confirm PICC tip location at the cavoatrial junction of an animal heart, in vivo. This was accomplished by inserting the optical fiber into a PICC and ratiometrically comparing simultaneous visible and near‐infrared reflection intensities of venous and atrial tissues found near the cavoatrial junction. The system was successful in placing the PICC line tip within 5 mm of the cavoatrial junction.   相似文献   

8.
In recent years, two‐photon fluorescence microscopy has gained significant interest in bioimaging. It allows the visualization of deeply buried inhomogeneities in tissues. The near‐infrared (NIR) dyes are also used for deep tissue imaging. Indocyanine green (ICG) is the only U.S. Food and Drug Administration (FDA) approved exogenous contrast agent in the NIR region for clinical applications. However, despite its potential candidature, it had never been used as a two‐photon contrast agent for biomedical imaging applications. This letter provides an insight into the scope and application of the two‐photon excitation property of ICG to the second excited singlet (S2) state in aqueous solution. Furthermore, in this work, we demonstrate the two‐photon cellular imaging application of ICG using direct fluorescence emission from S2 state for the first time. Our results show that two‐photon excitation to S2 state of ICG could be achieved with approximately 790 nm wavelength of femtosecond laser, which lies in well‐known “tissue‐optical window.” This property would enable light to penetrate much deeper in the turbid medium such as biological tissues. Thus, ICG could be used as the first FDA approved NIR exogenous contrast agent for two‐photon imaging. These findings can make remarkable influence on preclinical and clinical cell imaging.   相似文献   

9.
Skull optical clearing window permits us to perform in vivo cortical imaging without craniotomy, but mainly limits to visible (vis)‐near infrared (NIR)‐I light imaging. If the skull optical clearing window is available for NIR‐II, the imaging depth will be further enhanced. Herein, we developed a vis‐NIR‐II skull optical clearing agents with deuterium oxide instead of water, which could make the skull transparent in the range of visible to NIR‐II. Using a NIR‐II excited third harmonic generation microscope, the cortical vasculature of mice could be clearly distinguished even at the depth of 650 μm through the vis‐NIR‐II skull clearing window. The imaging depth after clearing is close to that without skull, and increases by three times through turbid skull. Furthermore, the new skull optical clearing window promises to realize NIR‐II laser‐induced targeted injury of cortical single vessel. This work enhances the ability of NIR‐II excited nonlinear imaging techniques for accessing to cortical neurovasculature in deep tissue.  相似文献   

10.
Dye‐sensitized solar cells (DSCs) have attracted great interest as one of the most promising photovoltaic technologies, and transparent DSCs show potential applications as photovoltaic windows. However, the competition between light absorption for photocurrent generation and light transmittance for obtaining high transparency limits the performance of transparent DSCs. Here, transparent DSCs exhibiting a high light transmittance of 60.3% and high energy conversion efficiency (3.66%) are reported. The strategy is to create a cocktail system composed of ultraviolet and near‐infrared dye sensitizers that selectively and efficiently harvest light in the invisible or low‐eye‐sensitivity region while transmitting light in high‐eye‐sensitivity regions. This new design provides a reasonable approach for realizing high efficiency and transparency DSCs that have potential applications as photovoltaic windows.  相似文献   

11.
Label-free monitoring of biomolecular reactions in real-time is of great interest since it can provide valuable information about binding kinetics and equilibrium constants. In this report, a sensor based on White Light Reflectance Spectroscopy (WLRS) is presented that is capable of real-time monitoring of biomolecular reactions taking place on top of a polymer covered silicon dioxide reflective surface. The optical set-up consists of a visible–near infrared light source, a bifurcated optical fiber and a spectrometer. The outer part of the optical fiber guides the light vertically onto the surface where the biomolecular reactions occur, whereas the reflected light is driven from the central part of the fiber to the spectrometer. A microfluidic module in combination with a pump supplies the reagents at a constant rate. The biomolecular interactions are monitored as shifts of the wavelength of the interference minimum. The proposed methodology was applied for real-time and label-free monitoring mouse gamma-globulins binding onto immobilized anti-mouse IgG antibody. Mouse gamma-globulins at concentrations down to 150 pM were detected in reaction times of 1-min. Regeneration of immobilized antibody was accomplished up to seven times without loss of its activity. In addition, real-time monitoring of hybridization reaction between complementary oligonucleotides was accomplished. The proposed sensor provides a simple, fast, low cost approach for label-free monitoring of biomolecular interactions and therefore it should by suitable for a wide range of analytical applications.  相似文献   

12.
Several optical imaging techniques have been used to monitor bacterial tropisms for cancer. Most such techniques require genetic engineering of the bacteria to express optical reporter genes. This study investigated a novel tumor‐targeting strain of bacteria, Rhodobacter sphaeroides 2.4.1 (R. sphaeroides), which naturally emits near‐infrared fluorescence, thereby facilitating the visualization of bacterial tropisms for cancer. To determine the penetration depth of bacterial fluorescence, various numbers of cells (from 108 to 1010 CFU) of R. sphaeroides and two types of Escherichia coli, which stably express green fluorescent protein (GFP) or red fluorescent protein (RFP), were injected s.c. or i.m. into mice. Bacterial tropism for cancer was determined after i.v. injection of R. sphaeroides (108 CFU) into mice implanted s.c. with eight types of tumors. The intensity of the fluorescence signal in deep tissue (muscle) from R. sphaeroides was much stronger than from E. coli‐expressing GFP or RFP. The near‐infrared fluorescence signal from R. sphaeroides was visualized clearly in all types of human or murine tumors via accumulation of bacteria. Analyses of C‐reactive protein and procalcitonin concentrations and body weights indicated that i.v. injection of R. sphaeroides does not induce serious systemic immune reactions. This study suggests that R. sphaeroides could be used as a tumor‐targeting microorganism for the selective delivery of drugs to tumor tissues without eliciting a systemic immune reaction and for visualizing tumors.  相似文献   

13.
Light‐sheet fluorescence microscopy (LSFM) is a powerful tool for biological studies because it allows for optical sectioning of dynamic samples with superior temporal resolution. However, LSFM using 2 orthogonally co‐aligned objectives requires a special sample geometry, and volumetric imaging speed is limited due to physical sample translation. This paper describes an oblique scanning 2‐photon LSFM (OS‐2P‐LSFM) that eliminates these limitations by using a single objective near the sample and a refractive scanning‐descanning system. This system also provides improved light‐sheet confinement against scattering by using a 2‐photon Bessel beam. The OS‐2P‐LSFM hold promise for studying structural, functional and dynamic aspects of living tissues and organisms because it allows for high‐speed, translation‐free and scattering‐robust 3D imaging of large biological specimens.   相似文献   

14.
Oxygen and water vapor content, in the lungs of a 3D‐printed phantom model based on CT‐images of a preterm infant, is evaluated using Tunable Diode Laser Absorption Spectroscopy (TDLAS) in Gas in Scattering Media Absorption Spectroscopy (GASMAS), that is, the TDLAS‐GASMAS technique. Oxygen gas is detected through an absorption line near 764 nm and water vapor through an absorption line near 820 nm. A model with a lung containing interior structure is compared to a model with a hollow lung. Compared to the model with the hollow lung, both the mean absorption path length and the transmitted intensity are found to be lower for the model with the structured lung. A new approach, where laser light is delivered internally into the model through an optical fiber, is compared to dermal light administration, that is, illumination onto the skin, for the model with structure inside the lung. The internal light administration generally resulted in larger gas absorption, and higher signal‐to‐noise ratios, compared to the dermal light administration. The results from the phantom measurements show great promise for the internal illumination approach and a natural next step would be to investigate it further in clinical studies.  相似文献   

15.
A numerical simulation of the transport of light energy in the near infrared region of the spectrum through human brain tissue is presented. This simulation models the use of near infrared spectroscopic techniques to quantify the levels of oxygen present in brain tissue. Successful application of the technique requires knowledge of the optical pathlength in the tissue, and it is the goal of this simulation to quantify the relationship of the optical pathlength and the oxygenation state of the tissue. Both implicit and explicit finite element schemes for unstructured grids are implemented and discussed. Several application simulations using three tissue grids of varying degrees of physiological accuracy are then conducted, and figures for the optical pathlength of light through the tissue at varying levels of oxygenation are computed. These results are then used to develop a quantitative relationship between the pathlength and the absorption parameter for the three tissue models which we explore.  相似文献   

16.
A numerical simulation of the transport of light energy in the near infrared region of the spectrum through human brain tissue is presented. This simulation models the use of near infrared spectroscopic techniques to quantify the levels of oxygen present in brain tissue. Successful application of the technique requires knowledge of the optical pathlength in the tissue, and it is the goal of this simulation to quantify the relationship of the optical pathlength and the oxygenation state of the tissue. Both implicit and explicit finite element schemes for unstructured grids are implemented and discussed. Several application simulations using three tissue grids of varying degrees of physiological accuracy are then conducted, and figures for the optical pathlength of light through the tissue at varying levels of oxygenation are computed. These results are then used to develop a quantitative relationship between the pathlength and the absorption parameter for the three tissue models which we explore.  相似文献   

17.
Adjusting the light exposure and capture of their symbiotic photosynthetic dinoflagellates (genus Symbiodinium Freud.) is central to the success of reef‐building corals (order Scleractinia) across high spatio‐temporal variation in the light environment of coral reefs. We tested the hypothesis that optical properties of tissues in some coral species can provide light management at the tissue scale comparable to light modulation by colony architecture in other species. We compared within‐tissue scalar irradiance in two coral species from the same light habitat but with contrasting colony growth forms: branching Stylophora pistillata and massive Lobophyllia corymbosa. Scalar irradiance at the level of the symbionts (2 mm into the coral tissues) were <10% of ambient irradiance and nearly identical for the two species, despite substantially different light environments at the tissue surface. In S. pistillata, light attenuation (90% relative to ambient) was observed predominantly at the colony level as a result of branch‐to‐branch self‐shading, while in L. corymbosa, near‐complete light attenuation (97% relative to ambient) was occurring due to tissue optical properties. The latter could be explained partly by differences in photosynthetic pigment content in the symbiont cells and pigmentation in the coral host tissue. Our results demonstrate that different strategies of light modulation at colony, polyp, and cellular levels by contrasting morphologies are equally effective in achieving favorable irradiances at the level of coral photosymbionts.  相似文献   

18.
In this study, the effect of plasmonic core‐shell structures, consisting of dielectric cores and metallic nanoshells, on energy conversion in dye‐sensitized solar cells (DSSCs) is investigated. The structure of the core‐shell particles is controlled to couple with visible light so that the visible component of the solar spectrum is amplified near the core‐shell particles. In core‐shell particle – TiO2 nanoparticle films, the local field intensity and light pathways are increased due to the surface plasmons and light scattering. This, in turn, enlarges the optical cross‐section of dye sensitizers coated onto the mixed films. When 22 vol% of core‐shell particles are added to a 5 μm thick TiO2 film, the energy conversion efficiency of DSSCs increases from 2.7% to 4.0%, in spite of a more than 20% decrease in the amount of dyes adsorbed on the composite films. The correlation between core‐shell particle content and energy conversion efficiency in DSSCs is explained by the balance among near‐field effects, light scattering efficiency, and surface area in the composite films.  相似文献   

19.
We present a light emitting diode (LED)‐based optical waveguide array that can optogenetically modulate genetically targeted neurons in the brain. The reusable part of the system consists of control electronics and conventional multi‐wavelength LED. The disposable part comprises optical fibers assembled with microlens array fabricated on a silicon die. Both parts can be easily assembled and separated by snap fit structure. Measured light intensity is 3.35 mW/mm2 at 469 nm and 0.29 mW/mm2 at 590 nm when the applied current is 80 mA. In all the tested conditions, the light‐induced temperature rise is under 0.5°C and over 90% of the relative light intensity is maintained at 2 mm‐distance from the fiber tips. We further tested the efficiency of the optical array in vivo at 469 nm. When the optical array delivers light stimulation on to the visual cortex of a mouse expressing channelrhodopsin‐2, the neural activity is significantly increased. The light‐driven neural activity is successfully transformed into a percept of the mouse, showing significant learning of the task detecting the cortical stimulation. Our results demonstrate that the proposed optical array interfaces well with the neural circuits in vivo and the system is applicable to guide animal behaviors.   相似文献   

20.
Flash photolysis has become an essential technique for dynamic investigations of living cells and tissues. This approach offers several advantages for instantly changing the concentration of bioactive compounds outside and inside living cells with high spatial resolution. Light sources for photolysis need to deliver pulses of high intensity light in the near UV range (300-380 nm), to photoactivate a sufficient amount of molecules in a short time. UV lasers are often required as the light source, making flash photolysis a costly approach. Here we describe the use of a high power 365 nm light emitting diode (UV LED) coupled to an optical fiber to precisely deliver the light to the sample. The ability of the UV LED light source to photoactivate several caged compounds (CMNB-fluorescein, MNI-glutamate, NP-EGTA, DMNPE-ATP) as well as to evoke the associated cellular Ca(2+) responses is demonstrated in both neurons and astrocytes. This report shows that UV LEDs are an efficient light source for flash photolysis and represent an alternative to UV lasers for many applications. A compact, powerful, and low-cost system is described in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号