首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We identified 14 novel polymorphic microsatellite loci in the black‐capped vireo (Vireo atricapillus). We also attempted to amplify and genotype these loci in other Vireo species, including the white‐eyed vireo (Vireo griseus), red‐eyed vireo (Vireo olivaceus), and blue‐headed vireo (Vireo solitarius). In 33 genotyped black‐capped vireos from two locations, total alleles ranged from six to 20, with observed heterozygosity ranging from 0.58 to 0.91 and expected heterozygosity from 0.65 to 0.93. Two loci had detectable levels of null alleles. Many of the loci were able to be amplified in the related Vireo species.  相似文献   

2.
We describe a cyclic on‐column procedure for the sequential degradation of complex O‐glycans on proteins or peptides by periodate oxidation of sugars and cleavage of oxidation products by elimination. Desialylated glycoproteins were immobilized to alkali‐stable, reversed‐phase Poros 20 beads followed by two degradation cycles and the eluted apoproteins were either separated by SDS gel electrophoresis or digested with trypsin prior to LC/ESI‐MS. We demonstrate on the peptide and protein level that even complex glycan moieties are removed under mild conditions with only minimal effects on structural integrity of the peptide core by fragmentation, dehydration or by racemization of the Lys/Arg residues. The protocol is applicable on gel‐immobilized glycoproteins after SDS gel electrophoresis. Conversion of O‐glycoproteins into their corresponding apoproteins should result in facilitated accessibility of tryptic cleavage sites, increase the numbers of peptide fragments, and accordingly enhance protein coverage and identification rates within the subproteome of mucin‐type O‐glycoproteins.  相似文献   

3.
The simultaneous discrimination of cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) is of great importance due to their roles in biology and close link to many diseases, especially via the development of a far‐red fluorescent probe that could be used for rapid, selective, and sensitive detection of all three. Herein, we report the characterization of a far‐red fluorescent probe with turn‐on fluorescence properties and visible color changes that could be used for the detection of cysteine and homocysteine over glutathione. In this study we found that the sensor could discriminate cysteine and homocysteine over glutathione within 20 min. Function of this probe was based on the conjugate addition–cyclization reaction and showed a low detection limit to cysteine and homocysteine. Upon the addition of cysteine and homocysteine, the absorption band at 592 nm rose gradually and fluorescence was detected at 645 nm. The color changed from colorless to blue and fluorescence changed from absent to strong red fluorescence, which could be differentiated by the naked eye. All these unique features make this probe particularly potentially favorable for use in cysteine/homocysteine sensing and bioimaging applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Controlling environmental conditions, such as mechanical stimuli, is critical for directing cells into functional tissue. This study reports on the development of a bioreactor capable of controlling the mechanical environment and continuously measuring force‐displacement in engineered tissue. The bioreactor was built from off the shelf components, modified off the shelf components, and easily reproducible custom built parts to facilitate ease of setup, reproducibility and experimental flexibility. A T‐flask was modified to allow for four tissue samples, mechanical actuation via a LabView controlled stepper motor and transduction of force from inside the T‐flask to an external sensor. In vitro bench top testing with instrumentation springs and tissue culture experiments were performed to validate system performance. Force sensors were highly linear (R2 > 0.998) and able to maintain force readings for extended periods of time. Tissue culture experiments involved cyclic loading of polyurethane scaffolds seeded with and without (control) human foreskin fibroblasts for 8 h/day for 14 days. After supplementation with TGF‐β, tissue constructs showed an increase in stiffness between consecutive days and from the acellular controls. These experiments confirmed the ability of the bioreactor to distinguish experimental groups and monitor tissue stiffness during tissue development. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
In natural tissues cells are embedded in a three‐dimensional fibrous network of biopolymers like collagen, hyaluronic acid etc. This extracellular matrix (ECM) influences the cell fate, the differentiation status, metabolic processes and provides structural integrity. For a three‐dimensional or physiological cell cultivation that are required in biomedical applications (e.g. tissue engineering, BioMEMS) scaffolds are needed. These scaffolds mimic the ECM according to their biocompatibility which comprises aspects of surface compatibility and importantly for tissue engineering applications aspects of structural compatibility. We have evaluated scaffold design parameters for the three‐dimensional cultivation of chondrocytes for the tissue engineering of artificial cartilage. Two‐photon polymerization is a powerful technique for fabrication of polymeric three‐dimensional micro‐ and submicro‐structures. The photoinitiation system for two‐photon polymerization is excited by simultaneous absorption of two photons leading to chemical polymerization reactions. Due to a tight confinement of the excitation volume around the focal point, this method can produce micrometer sized objects maintaining a high spatial resolution down to 100 nm. Two‐photon processes require very high photon densities which are provided by pulsed femtosecond lasers. The potential of this approach for microfabrication of scaffolds for tissue engineering is demonstrated by investigation of the cell response to microstructures with complex three‐dimensional geometry and feature sizes in the range of few micrometers.  相似文献   

6.
N‐acetyl‐seryl‐aspartyl‐lysyl‐proline (AcSDKP) is a natural inhibitor of pluripotent hematopoietic stem cell proliferation and is normally found in human plasma. Because AcSDKP is hydrolyzed by the N‐terminal active site of angiotensin converting enzyme and partially eliminated in urine, its plasma level is a result of a complex balance between its production, hydrolysis by ACE, and renal elimination. In this study, we attempted to establish an enzyme immunoassay (EIA) for quantifying AcSDKP‐like immunoreactive substance (IS), which is applicable for monitoring plasma AcSDKP levels in healthy subjects and patients with chronic renal failure. Using β‐ d ‐galactosidase‐labeled Gly‐γAbu‐SDKP as a marker antigen, an anti‐rabbit IgG‐coated immunoplate as a bound/free separator and 4‐methylumbelliferyl‐β‐ d ‐galactopyranoside as a fluorogenic substrate, a highly sensitive and specific EIA was developed for the quantification of AcSDKP‐IS in human plasma. The lower limit of quantification was 0.32 fmol/well, and the sharp inhibition competitive EIA calibration curve obtained was linear between 8.0 and 513 fmol/ml. This EIA was so sensitive that only 10 µl plasma sample was required for a single assay. The coefficients of variation (reproducibility) for human plasma concentrations of 0.2 and 2.1 pmol/ml were 7.2 and 7.7%, respectively, for inter‐assay and 13.3 and 7.8% for intra‐assay comparisons. Plasma AcSDKP‐IS level was significantly higher in patients with chronic renal failure (0.92 ± 0.39 pmol/ml) compared with healthy subjects (0.29 ± 0.07 pmol/ml). These results suggest that our EIA may be useful to evaluate plasma AcSDKP level as a biomarker in various patients. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
This article demonstrates the application of time‐lapsed imaging and image processing to inform the supercritical processing of tissue scaffolds that are integral to many regenerative therapies. The methodology presented provides online quantitative evaluation of the complex process of scaffold formation in supercritical environments. The capabilities of the developed system are demonstrated through comparison of scaffolds formed from polymers with different molecular weight and with different venting times. Visual monitoring of scaffold fabrication enabled key events in the supercritical processing of the scaffolds to be identified including the onset of polymer plasticization, supercritical points and foam formation. Image processing of images acquired during the foaming process enabled quantitative tracking of the growing scaffold boundary that provided new insight into the nature of scaffold foaming. Further, this quantitative approach assisted in the comparison of different scaffold fabrication protocols. Observed differences in scaffold formation were found to persist, post‐fabrication as evidenced by micro x‐ray computed tomography (μ x‐ray CT) images. It is concluded that time‐lapsed imaging in combination with image processing is a convenient and powerful tool to provide insight into the scaffold fabrication process. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

8.
Metabolomics – the comprehensive analysis of metabolites – was recently used to classify yeast mutants with no overt phenotype using raw data as metabolic fingerprints or footprints. In this study, we demonstrate the estimation of a complicated phenotype, longevity, and semi‐rational screening for relevant mutants using metabolic profiles as strain‐specific fingerprints. The fingerprints used in our experiments are profiled data consisting of individually identified and quantified metabolites rather than raw spectrum data. We chose yeast replicative lifespan as a model phenotype. Several yeast mutants that affect lifespan were selected for analysis, and they were subjected to metabolic profiling using mass spectrometry. Fingerprinting based on the profiles revealed a correlation between lifespan and metabolic profile. Amino acids and nucleotide derivatives were the main contributors to this correlation. Furthermore, we established a multivariate model to predict lifespan from a metabolic profile. The model facilitated the identification of putative longevity mutants. This work represents a novel approach to evaluate and screen complicated and quantitative phenotype by means of metabolomics.  相似文献   

9.
To optimize the resection of gliomas during neurosurgery we present an imaging system capable of wide field fluorescence lifetime mapping with 11 mm field of view and 250 mm working distance. Based on a time of flight dual‐tap CMOS camera and a modulated laser at 405 nm we show unobserved quenching effects in tissue phantoms and demonstrate life‐time imaging on 5‐ALA labeled human ex vivo brain tumor samples. Further details can be found in the article by Mikael T. Erkkilä, Bianca Bauer, Nancy Hecker‐Denschlag, et al. ( e201800378 ).

  相似文献   


10.
11.
12.
Aims: To explore new resources of methane‐utilizing micro‐organism and develop a microbial biosensing system for monitoring methane released from natural and semi‐natural ecosystems. Methods and Results: A methane (CH4)‐utilizing bacterial strain was isolated from paddy soil using CH4 as the sole carbon source and identified as Klebsiella sp. ME17 by phenotyping and 16S rDNA sequence analysis. The efficiency of CH4 utilization of strain ME17 was 83·2% by gas chromatography analysis. A microbial biosensing system for CH4 detection was developed by combining immobilized cells of strain ME17 with a dissolved oxygen sensor. It was found that response time of the system to CH4 was <90s. The dissolved O2 consumption increased with increasing CH4 from 0% to 16·0% (v/v) demonstrating a positive linear relationship with a low detection limit of 0·2% (v/v). The relative standard deviation is 3·48%. Conclusions: Klebsiella sp. ME17 isolate is capable of utilizing CH4. The microbial biosensing system of strain ME17 has been successfully applied to measure standard CH4 sample with satisfactory results. Significance and Impact of the Study: This study suggests that certain strains of Klebsiella genus are capable of utilizing CH4. Our proposed method appears very attractive for CH4 measurement in coal mine.  相似文献   

13.
14.
Argonaute proteins associate with microRNAs and are key components of gene silencing pathways. With such a pivotal role, these proteins represent ideal targets for regulatory post‐translational modifications. Using quantitative mass spectrometry, we find that a C‐terminal serine/threonine cluster is phosphorylated at five different residues in human and Caenorhabditis elegans. In human, hyper‐phosphorylation does not affect microRNA binding, localization, or cleavage activity of Ago2. However, mRNA binding is strongly affected. Strikingly, on Ago2 mutants that cannot bind microRNAs or mRNAs, the cluster remains unphosphorylated indicating a role at late stages of gene silencing. In C. elegans, the phosphorylation of the conserved cluster of ALG‐1 is essential for microRNA function in vivo. Furthermore, a single point mutation within the cluster is sufficient to phenocopy the loss of its complete phosphorylation. Interestingly, this mutant retains its capacity to produce and bind microRNAs and represses expression when artificially tethered to an mRNA. Altogether, our data suggest that the phosphorylation state of the serine/threonine cluster is important for Argonaute–mRNA interactions.  相似文献   

15.
16.
Novel tissue‐culture bioreactors employ flow‐induced shear stress as a means of mechanical stimulation of cells. We developed a computational fluid dynamics model of the complex three‐dimensional (3D) microstructure of a porous scaffold incubated in a direct perfusion bioreactor. Our model was designed to predict high shear‐stress values within the physiological range of those naturally sensed by vascular cells (1–10 dyne/cm2), and will thereby provide suitable conditions for vascular tissue‐engineering experiments. The model also accounts for cellular growth, which was designed as an added cell layer grown on all scaffold walls. Five model variants were designed, with geometric differences corresponding to cell‐layer thicknesses of 0, 50, 75, 100, and 125 µm. Four inlet velocities (0.5, 1, 1.5, and 2 cm/s) were applied to each model. Wall shear‐stress distribution and overall pressure drop calculations were then used to characterize the relation between flow rate, shear stress, cell‐layer thickness, and pressure drop. The simulations showed that cellular growth within 3D scaffolds exposes cells to elevated shear stress, with considerably increasing average values in correlation to cell growth and inflow velocity. Our results provide in‐depth analysis of the microdynamic environment of cells cultured within 3D environments, and thus provide advanced control over tissue development in vitro. Biotechnol. Bioeng. 2010; 105: 645–654. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Most of the existing production capacity is based on fed‐batch bioreactors. Thanks to the development of more efficient cell lines and the development of high‐performance culture media, cell productivity dramatically increased. In a manufacturing perspective, it is necessary to clear as quickly as possible the protein A capture step to respect the manufacturing agenda. This article describes the methodology applied for the design of a multicolumn chromatography process with the objective of purifying as quickly as possible 1,000 and 15,000 L fed‐batch bioreactors. Several recent and reference protein A resins are compared based on characteristic values obtained from breakthrough curves. The importance and relevance of resin parameters are explained, and purposely simple indicators are proposed to quickly evaluate the potential of each candidate. Based on simulation data, the optimum BioSC systems associated with each resin are then compared. The quality of the elution delivered by each resin is also compared to complete the assessment. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:941–953, 2017  相似文献   

18.
19.
K. Yamashiro, K. Taira, M. Nakajima, D. Okuyama, M. Azuma, H. Takeda, H. Suzuki, H. Jotoku, K. Watanabe, M. Takahashi, K. Taguchi and M. Tamura
Tissue rinse liquid‐based cytology: a feasible tool for the intraoperative pathological evaluation of sentinel lymph nodes in breast cancer patients Objectives: A unique diagnostic method was designed for the intraoperative pathological evaluation of sentinel lymph nodes (SLNs) in breast cancer patients, and the results were verified with 2 years of experience. Methods: Excised lymph nodes were cut into 2‐mm‐thick slices and rinsed thoroughly in CytoRich Red®. The sliced tissues were embedded in a paraffin block. Three cytological glass slides of the cells exfoliated in CytoRich Red® were prepared by the SurePath® liquid‐based cytology (LBC) technique. Two slides were stained by the Papanicolaou method, and the remaining slide was immunostained with an anti‐keratin antibody. This process is called tissue rinse liquid‐based cytology (TRLBC). The results of TRLBC were compared with those of the final pathological diagnoses, including immunostaining with an anti‐keratin antibody on paraffin blocks (PB). Results: This study analysed 444 SLNs from 247 consecutive breast cancer patients. It required 35 minutes to complete the intraoperative diagnosis on a single node, and it took an additional 5 minutes per node if more than one node was submitted. When the results of PB were assumed to be the gold standard, the sensitivity and specificity of TRLBC were 81.9% and 96.1%, respectively. TRLBC detected all nodes with macrometastasis and 23 of 24 nodes with micrometastasis. Fifteen false‐negative TRLBC results were ‘isolated tumour cell clusters’ on PB, but there was one with micrometastasis histologically. Four of 14 false‐positive TRLBC results were proven to be true positive by supplementary examination using step sectioning of the paraffin blocks of the nodes. Conclusion: TRLBC is a feasible and promising intraoperative cytopathological tool showing a comparable efficacy to PB while still allowing the conventional postoperative histological examination.  相似文献   

20.
Sperm competition and sexual selection outcomes are sometimes reported as depending on sperm velocity and flagellar length, suggesting that sperm shape may be optimized for maximum efficiency. This is a largely unexamined assumption regarding sperm performance. Here, we examine this idea using a ‘swim‐up’ selection technique as a proxy for sperm transport within the female tract, testing the hypothesis that variation in sperm tail length should be reduced by this procedure. We detected small but significant (P < 0.001) increases in mean flagellar length in brown hare, pig and bull spermatozoa without reduction in variance. Applying the swim‐up technique to boar ejaculates confirmed that the selected populations were enriched for fast motile spermatozoa. These effects were also reflected in vivo where boar spermatozoa with both short and long flagellae were able to reach and colonize the oviductal sperm reservoir. The benefits of possessing a longer flagellum thus appear to be marginal, suggesting that sperm selection in vivo is based on more complex criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号