首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clinical cancer treatment aims to target all cell subpopulations within a tumor. Autofluorescence microscopy of the metabolic cofactors NAD(P)H and FAD has shown sensitivity to anti‐cancer treatment response. Alternatively, flow cytometry is attractive for high throughput analysis and flow sorting. This study measures cellular autofluorescence in three flow cytometry channels and applies cellular autofluorescence to sort a heterogeneous mixture of breast cancer cells into subpopulations enriched for each phenotype. Sorted cells were grown in culture and sorting was validated by morphology, autofluorescence microscopy, and receptor expression. Ultimately, this method could be applied to improve drug development and personalized treatment planning.

  相似文献   


2.
A hyperspectral image data cube acquired from HEK‐293 cells labeled with cytoplasmic and nuclear stains: Calcein Green and NucBlu. The top view (XY plane) displays three spectrally unmixed channels for cellular autofluorescence (red), Calcein Green (green), and NucBlue (blue). The Z axis shows spectral information, from low to high wavelength. The article by Leavesley and colleagues describes an approach for calculating the sensitivity of spectral imaging assays for detecting a fluorescence signature within a mix of other signatures or autofluorescence. Further details can be found in the article by Silas J. Leavesley et al. ( e201600227 ).

  相似文献   


3.
Tissue autofluorescence provides fluorescence lifetime contrast between acellular tissue and that containing newly seeded cells. Fiber‐based fluorescence lifetime imaging (FLIm) can be used for tracking recellularization of engineered vascular grafts and potential matrix remodeling at large scale, without compromising sample integrity. FLIm cellular contrast was verified in a subset of samples seeded with eGFP‐labelled cells. Results suggests fiberbased FLIm is a suitable tool for monitoring recellularization of engineered tissue nondestructively. Further details can be found in the article by Alba Alfonso‐Garcia, Jeny Shklover, Benjamin E. Sherlock, et al. ( e201700391 ).

  相似文献   


4.
We disclose a theranostic device for performing image‐guided riboflavin/UV‐A corneal cross‐linking. The device determines treatment efficacy by real time monitoring of riboflavin concentration in the corneal stroma. The study shows efficacy of the device in eye bank human donor tissues. Further details can be found in the article by Giuseppe Lombardo et al. ( e201800028 )

  相似文献   


5.
An integrated 4‐modality endoscopy system combining white light imaging, autofluorescence imaging, diffuse reflectance spectroscopy and Raman spectroscopy technologies was developed for in vivo endoscopic nasopharyngeal cancer detection. Both high diagnostic sensitivity (98.6%) and high specificity (95.1%) for differentiating cancer from normal tissue sites were achieved using this system combined with multivariate diagnostic algorithm, demonstrating great potential for improving real‐time, in vivo diagnosis of cancer at endoscopy. Further details can be found in the article by Duo Lin et al. ( e201700251 )

  相似文献   


6.
A multi‐wavelength prism coupling refractometer is utilized to measure the angular reflectance of freshly excised human intestinal tissue specimens. Based on reflectance data, the real and imaginary part of the refractive index is calculated via Fresnel analysis for three visible (blue, green, red) and two near‐infrared (963 nm and 1551 nm) wavelengths. Averaged values of the complex refractive index and corresponding Cauchy dispersion fits are given for the mucosa, submucosa and serosa layers of the colorectal wall at the normal state. The refractive constants of tumorous and normal mucosa are then cross‐compared for the indicative cases of one patient diagnosed with a benign polyp and three patients diagnosed with adenocarcinomas of different phenotype. Significant index contrast exists between the normal and diseased states, indicating the potential use of refractive index as a marker of colorectal dysplasia.

  相似文献   


7.
This paper presents a novel compact fiberoptic based singlet oxygen near‐infrared luminescence probe coupled to an InGaAs/InP single photon avalanche diode (SPAD) detector. Patterned time gating of the single‐photon detector is used to limit unwanted dark counts and eliminate the strong photosensitizer luminescence background. Singlet oxygen luminescence detection at 1270 nm is confirmed through spectral filtering and lifetime fitting for Rose Bengal in water, and Photofrin in methanol as model photosensitizers. The overall performance, measured by the signal‐to‐noise ratio, improves by a factor of 50 over a previous system that used a fiberoptic‐coupled superconducting nanowire single‐photon detector. The effect of adding light scattering to the photosensitizer is also examined as a first step towards applications in tissue in vivo.

  相似文献   


8.
Optical coherence tomography through an implanted dorsal imaging window allows for prolonged in vivo structural and functional assessment of the mouse oviduct (Fallopian tube), including threedimensional structural imaging, quantitative measurements of the smooth muscle contraction, and mapping of cilia beat frequency. This method brings new opportunities for live studies and longitudinal analyses of mouse reproductive events in the native context. Further details can be found in the article by Shang Wang et al. ( e201700316 ).

  相似文献   


9.
This study provides a simple method to detect human distal radius bone density based on near infrared (NIR) imaging. The information of bone mineral density can be measured by transluminational optical bone densitometric system. Compared to dual‐energy x‐ray absorptiometry (DXA) results in clinical trial, NIR images show a strong correlation to DXA. Further details can be found in the article by Chun Chung, Yu‐Pin Chen, Tsai‐Hsueh Leu, and Chia‐Wei Sun ( e201700342 ).

  相似文献   


10.
Protein secondary structural alteration in the serum sample as induced by colitis has been demonstrated via the spectral fitting. Using DSS mouse models of acute colitis and IL10‐/‐ for chronic colitis, a significant difference in the integral ratio of Gaussian energy bands representing α‐helix and β‐pleated sheet structures were obtained. Further details can be found in the article by Jitto Titus et al. ( e201700057 ).

  相似文献   


11.
Trans‐scleral iontophoresis device was shown to be effective for in‐situ delivery of lutein to the retina of human donor eyes. After treatment, Resonance Raman Spectroscopy measurements demonstrated that lutein greatly enriched the inner sclera, choroid and retina. Clinical studies are going to prove if the methodology would be a valuable approach to enrich the human macular pigment and prevent local oxidative damage in patients at risk of AMD progression. Further details can be found in the article by Marco Lombardo et al. ( e201700095 ).

  相似文献   


12.
Eu3+integrated photoluminescence intensity ratio (PLIR) approach for optical detection of lactates in blood serum, plasma and confocal imaging of brain tissues has very high potential for exploitation of this technique in both in vitro monitoring and in vivo bioimaging applications for the detection of biomarkers in various diseases states. This image is diagrammatic representation of fact that the overall PLIR is higher with more lactates conjugated with Eu3+ ions. Further details can be found in the article by Tarun Kakkar et al. ( e201700199 ).

  相似文献   


13.
Raman images were used to study the effect of the contaminant chlorpyriphos‐oxon on zebrafish eye samples. Multivariate Curve Resolution‐Alternating Least Squares (MCR‐ALS) was used to obtain the distribution maps and spectral signatures of biological components present in the images analyzed. The use of MCRALS spectral signatures as starting information for Partial Least Squares‐Discriminant Analysis allowed statistical assessment of the effect of the contaminant at a specific tissue level. Further details can be found in the article by Víctor Olmos et al. ( e201700089 ).

  相似文献   


14.
Gold nanoparticles serve as imaging contrast agents useful for two‐photon nonlinear microscopy of biological cells and tissues. In this study, 100‐nm‐sized gold particles with a multitude of nanopores embedded inside have been physically synthesized and investigated for the plasmonic enhancement in two‐photon luminescence. Exhibiting remarkable potential for two‐photon imaging, the porous gold nanoparticles boost near‐infrared light absorption substantially and allow emission signals 20 times brighter than gold nanorods being currently used as typical imaging agents. Further details can be found in the article by Joo H. Park et al. ( e201700174 )

  相似文献   


15.
Semiconductor nanocomposites provide advantages beyond the capability of typical fluorescent materials for cancer detection. In this work, nanowire‐based probes with dual color channels are employed to demonstrate the capacity of cancer cell detection. Purple emitting ZnO/antibody probes are applied to detect cancer cells and meanwhile TiO2/antibody probes with green light emission are applied to identify normal fibroblast cells. A series of quantitative analyses are conducted to verify the correlation between the concentrations of ZnO and TiO2 probes, cell numbers, and peak intensities of the PL spectra. The results provide a quantitative reference for developing nanowire‐based cancel cell probes.

  相似文献   


16.
Conventional thermal therapy monitoring techniques based on temperature are often invasive, limited by point sampling, and are indirect measures of tissue injury, while techniques such as magnetic resonance and ultrasound thermometry are limited by their spatial resolution.  The visualization of the thermal coagulation zone at high spatial resolution is particularly critical to the precise delivery of thermal energy to epithelial lesions. In this work, an integrated thulium laser thermal therapy monitoring system was developed based on complex differential variance (CDV), which enables the 2D visualization of the dynamics of the thermal coagulation process at high spatial and temporal resolution with an optical frequency domain imaging system. With proper calibration to correct for noise, the CDV‐based technique was shown to accurately delineate the thermal coagulation zone, which is marked by the transition from high CDV upon heating to a significantly reduced CDV once the tissue is coagulated, in 3 different tissue types ex vivo: skin, retina, and esophagus. The ability to delineate thermal lesions in multiple tissue types at high resolution opens up the possibility of performing microscopic image‐guided procedures in a vast array of epithelial applications ranging from dermatology, ophthalmology, to gastroenterology and beyond. 

  相似文献   


17.
Sensitive Escherichia coli detection based on a T4 bacteriophageimmobilized multimode microfiber is proposed and demonstrated in this article. Different modes are excited and guided in the microfiber as evanescent field that can interact with surrounding E. coli directly. The change of E. coli concentration and corresponding binding of E. coli on microfiber surface will lead to the shift of optical spectrum, which can be exploited for the application of biosensing. Further details can be found in the article by Yanpeng Li, Hui Ma, Lin Gan, et al. ( e201800012 ).

  相似文献   


18.
Congenital cardiovascular defects are the leading cause of birth defect related death. It has been hypothesized that fluid mechanical forces of embryonic blood flow affect cardiovascular development and play a role in congenital malformations. Studies in small animal embryos can improve our understanding of congenital malformations and can lead to better treatment. We present a feasibility study in which high‐resolution optical coherence tomography (OCT) and computational fluid dynamics (CFD) are combined to provide quantitative analysis of the embryonic flow mechanics and the associated anatomy in a small animal model.

  相似文献   


19.
Third Harmonic Generation (THG) microscopy as a non‐invasive, label free imaging methodology, allows linkage of lipid profiles with various breast cancer cells. The collected THG signal arise mostly from the lipid droplets and the membrane lipid bilayer. Quantification of THG signal can accurately distinguish HER2‐positive cells. Further analysis using Fourier transform infrared (FTIR) spectra reveals cancer‐specific profiles, correlating lipid raft‐corresponding spectra to THG signal, associating thus THG to chemical information.

THG imaging of a cancer cell.  相似文献   


20.
The internalization kinetics and intracellular spatial distribution of functionalized diatomite nanoparticles in human lung epidermoid carcinoma cell line have been investigated by confocal fluorescence and Raman microscopy. In this context, Raman imaging due to its non‐destructive, chemically selective and label‐free working principle provides evidence that the nanovectors are internalized and co‐localize with lipid environments, suggesting an endocytic internalisation route. Nanoparticle uptakes and intracellular persistence are observed up to 72 hours, without damage to cell viability or morphology. Further details can be found in the article by Stefano Managò et al. ( e201700207 )

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号