首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the development of transgenic tobacco plants with thaumatin gene of Thaumatococcus daniellii under the control of a strong constitutive promoter-CaMV 35S. Both polymerase chain reaction and genomic Southern analysis confirmed the integration of transgene. Transgenic plants exhibited enhanced resistance with delayed disease symptoms against fungal diseases caused by Pythium aphanidermatum and Rhizoctonia solani. The leaf extract from transgenic plants effectively inhibited the mycelial growth of these pathogenic fungi in vitro. The transgenic seeds exhibited higher germination percentage and seedling survival under salinity and PEG-mediated drought stress as compared to the untransformed controls. These observations suggest that thaumatin gene can confer tolerance to both fungal pathogens and abiotic stresses.  相似文献   

2.
Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens.  相似文献   

3.
Li Q  Lawrence CB  Xing HY  Babbitt RA  Bass WT  Maiti IB  Everett NP 《Planta》2001,212(4):635-639
Magainins are a group of short peptides originally isolated from frog skin and thought to function as a natural defense mechanism against infection due to their antimicrobial properties. The engineered magainin analog peptide Myp30 was found to inhibit spore germination of the oomycete, Peronospora tabacina (Adam) in vitro, and the growth of a bacterial pathogen Erwinia carotovora subsp. carotovora (Jones). Transgenic tobacco (Nicotiana tabacum L.) plants expressing Myp30 were evaluated for resistance to these pathogens. The expression of the peptide only to an extracellular location resulted in significant reduction in sporulation and lesion size due to P. tabacina infection. A significant increase in resistance to the bacterial pathogen was also observed regardless of the targeting location of the peptide. Received: 7 August 2000 / Accepted: 27 September 2000  相似文献   

4.
5.
Fertile transgenic tobacco plants with leaves expressing avidin in the vacuole have been produced and shown to halt growth and cause mortality in larvae of two noctuid lepidopterans, Helicoverpa armigera and Spodoptera litura. Late first instar H. armigera larvae and neonate (<12-h-old) S. litura larvae placed on leaves excised from T0 tobacco expressing avidin at 3.1–4.6M (moles/kg of fresh leaf tissue) had very poor growth over their first 8 days on the leaves, significant numbers had died by days 11 or 12 and all were dead by day 22 (H. armigera) or day 25 (S. litura). Similar results were obtained when late first instar H. armigera larvae were placed on leaves from T1 plants expressing avidin at six different average concentrations, ranging from 3.7 to 17.3M. Two larvae on the lowest expressing leaves survived to pupation, but there was total mortality among the other groups and no relationship between avidin concentration and the effects on the larvae. Synergistic effects between avidin-expressing tobacco plants and a purified Bt toxin, Cry1Ba, were demonstrated. Late instar H. armigera larvae fed with leaves from T2 plants expressing avidin at average concentrations of either <5.3 or >12.9M, and painted with Cry1Ba protein at a rate equivalent to an expression level of 0.5% of total leaf protein, died significantly faster than larvae given either of the two treatments alone. Larvae fed with avidin-expressing leaves painted with the protease inhibitor, aprotinin, at a rate equivalent to 1% of total leaf protein had mortality similar to those given avidin-leaves alone. There was no evidence of antagonism between these two proteins.  相似文献   

6.
7.
Previous research suggests that the endogenous synthesis of gamma-aminobutyrate (GABA), a naturally occurring inhibitory neurotransmitter, serves as a plant defense mechanism against invertebrate pests. Here, we tested the hypothesis that elevated GABA levels in engineered tobacco confer resistance to the northern root nematode (Meloidogyne hapla). This nematode species was chosen because of its sedentary nature and economic importance in Canada. We derived nine phenotypically normal, homozygous lines of transgenic tobacco (Nicotiana tabacum L.), which contain one or two copies of a full-length, chimeric tobacco glutamate decarboxylase (GAD) cDNA or a mutant version that lacks the autoinhibitory calmodulin-binding domain, under the control of a chimeric octopine synthase/mannopine synthase promoter. Regardless of experimental protocol, uninfected transgenic lines consistently contained higher GABA concentrations than wild-type controls. Growth chamber trials revealed that 9–12 weeks after inoculation of tobacco transplants with the northern root-knot nematode, mature plants of five lines possessed significantly fewer egg masses on the root surface when the data were expressed on both root and root fresh weight bases. Therefore, it can be concluded that constitutive transgenic expression of GAD conferred resistance against the root-knot nematode in phenotypically normal tobacco plants, probably via a GABA-based mechanism.  相似文献   

8.
9.
Transgenic tobacco plants containing a mouse metallothionein-I (MT-I) gene fused to the cauliflower mosaic virus 35S (CaMV 35S) promoter and nopaline synthase (nos) polyadenylation site were obtained by transforming tobacco leaf discs with an Agrobacterium tumefaciens strain carrying the chimaeric gene. Transformants were directly selected and rooted on medium containing cadmium and kanamycin. A total of 49 individual transgenic tobacco plants were regenerated. Among them 20% showed a very high expression level and their growth was unaffected by up to 200 M cadmium, whereas the growth of control plants was severely affected leaf chlorosis occurred on medium containing only 10 M cadmium. The concentration of MT-I in leaves of control and transgenic tobacco was determined with Cd/haemoglobin saturation assay, a polarographic method and western blotting. In addition, seeds from self-fertilized transgenic plants were germinated on medium containing toxic levels of cadmium and scored for tolerance/susceptibility to this heavy metal. The ratio of tolerant to susceptible plants was 3:1 indicating that the metallothionein gene is inherited as a single locus.  相似文献   

10.
采用遗传转化技术获得了整合有拟南芥AtELHYPRP2(EARLI1-LIKE HYBRID PROLINE-RICH PROTEIN 2,AT4G12500)基因的转基因烟草株系,研究了该基因编码蛋白对真菌病原体赤霉菌的抗性及其亚细胞定位特征。以拟南芥Col-0生态型基因组DNA为模板,通过聚合酶链反应扩增AtELHYPRP2基因编码序列,经限制性酶切后连接至pCAMBIA1302载体,构建产生pCAMBIA1302-AtELHYPRP2-GFP融合表达载体。进一步采用农杆菌LBA4404转化烟草叶片外植体,筛选得到转基因烟草植株。RT-PCR、Western blotting印迹分析结果显示,AtELHYPRP2基因在转化体中可以有效表达。激光共聚焦显微观察发现AtELHYPRP2-GFP融合蛋白产生的绿色荧光与碘化丙啶染色后产生的红色荧光能够重合,说明AtELHYPRP2蛋白定位于细胞表面。真菌侵染实验结果显示,组成性表达AtELHYPRP2基因能够增强烟草对赤霉菌的抗性,被侵染部位有明显的H2O2积累。转基因烟草植株中PR1基因的本底表达水平比野生型高,PR1和PR5基因的系统表达水平比野生型高,说明AtELHYPRP2基因可能在SAR反应中具有一定的作用。  相似文献   

11.
Thionins are cysteine-rich, 5 kDa polypeptides which are toxic to plant pathogens in vitro. Expression of the gene encoding α-thionin from barley endosperm, under the 35S promoter from cauliflower mosaic virus, conferred to transgenic tobacco enhanced resistance to the bacterial plant pathogens Pseudomonas syringae pv. tabaci 153 and P. syringae pv. syringae. The barley α-thionin gene, which has two introns, was correctly spliced in tobacco. The α-thionin in transgenic plants had the expected mobility in the gradient, when separated by high-performance liquid chromatography, reacted with monospecific antibodies and showed the expected antibiotic properties in vitro.  相似文献   

12.
Xenorhabdus nematophila is an entomopathogenic bacteria. It secretes a GroEL homolog, XnGroEL protein, toxic to its larval prey. GroEL belongs to the family of molecular chaperones and is required for proper folding of cellular proteins. Oral ingestion of insecticidal XnGroEL protein is toxic to Helicoverpa armigera, leading to cessation of growth and development of the larvae. In the present study, the insecticidal efficacy of XnGroEL against H. armigera has been evaluated in transgenic tobacco plant expressing the protein. A 1.7-kb gene encoding the 58-kDa XnGroEL protein was incorporated into the tobacco genome via Agrobacterium-mediated transformation. The stable integration of the transgene was confirmed by Southern blot analysis and its expression by RT-PCR and western blot analyses in transgenic plants. The transgenic lines showed healthy growth and were phenotypically normal. Insect bioassays revealed significant reduction of 100 % in the survival of larvae (p < 0.001) and 55–77 % reduction in plant damage (p < 0.05 and p < 0.001) compared to the untransformed and vector control plants. The results demonstrate that XnGroEL is a novel potential candidate for imparting insect resistance against H. armigera in plants.  相似文献   

13.
Plants resistant to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were produced through the genetic engineering of a novel detoxification pathway into the cells of a species normally sensitive to 2,4-D. We cloned the gene for 2,4-D monooxygenase, the first enzyme in the plasmid-encoded 2,4-D degradative pathway of the bacterium Alcaligenes eutrophus, into a cauliflower mosaic virus 35S promoter expression vector and introduced it into tobacco plants by Agrobacterium-mediated transformation. Transgenic tobacco plants expressing the highest levels of the monooxygenase enzyme exhibited increased tolerance to 2,4-D in leaf disc and seed germination assays, and young plants survived spraying with levels of herbicide up to eight times the usual field application rate. The introduction of the gene for 2,4-D monooxygenase into broad-leaved crop plants, such as cotton, should eventually allow 2,4-D to be used as an inexpensive post-emergence herbicide on economically important dicot crops.  相似文献   

14.
Agrobacterium rhizogenes-transformed sugar beet hairy roots, expressing dsRNA from the Beet necrotic yellow vein virus replicase gene, were used as a novel approach to assess the efficacy of three intron-hairpin constructs at conferring resistance to rhizomania disease. Genetically engineered roots were similar in morphology to wild type roots but were characterized by a profound abundancy, rapid growth rate and, in some cases, plagiotropic development. Upon challenge inoculation, seedlings showed a considerable delay in symptom development compared to untransformed or vector-transformed seedlings, expressing dsRNA from an unrelated source. The transgenic root system of almost all seedlings contained no or very low virus titer while the non-transformed aerial parts of the same plants were found infected, leading to the conclusion that the hairy roots studied were effectively protected against the virus. This readily applicable novel method forms a plausible approach to preliminarily evaluate transgenic rhizomania resistance before proceeding in transformation and whole plant regeneration of sugar beet, a tedious and time consuming process for such a recalcitrant crop species.  相似文献   

15.
[背景]近年来,随着猕猴桃种植面积的不断扩大,病害的频繁发生已逐渐影响猕猴桃的产量和品质。恶疫霉(Phytophthora cactorum)、樟疫霉(P.cinnamomi)和雪松疫霉(P.lateralis)是一类可以引起猕猴桃根腐病的致病疫霉菌。[目的]建立并优化可以同时检测3种致病疫霉的多重实时定量检测技术,并调查猕猴桃主要产区的致病菌分布情况。[方法]基于Ypt1 (ras-related protein gene)基因设计恶疫霉、樟疫霉和雪松疫霉的特异性TaqMan探针和引物,建立并优化多重实时荧光定量PCR检测体系。利用近缘种检验检测体系特异性并进行灵敏度测试,应用该检测体系分析猕猴桃主要产区根际土壤中3种致病疫霉的Yt1基因含量。[结果]供测试的11个恶疫霉近缘种、11个樟疫霉近缘种、13个雪松疫霉近缘种及非目标菌种DNA样品中均无荧光信号,反应结果为阴性,而在恶疫霉、樟疫霉和雪松疫霉DNA样品中分别检测出HEX、FAM和ROX荧光信号,反应结果为阳性。三种疫霉的检测灵敏度均达到100fg。此外,通过对猕猴桃主产区陕西省周至县和眉县果园共166份土壤样品的检测发现,恶疫霉的分布最广泛且Ypt1基因含量最高,樟疫霉和雪松疫霉则相对较少。[结论]建立的猕猴桃根腐病致病疫霉多重实时定量检测体系特异性强、灵敏度高,适合于恶疫霉、樟疫霉和雪松疫霉的检测及定量分析。该技术可为猕猴桃疫霉病害的早期诊断、监测及预防提供指导。  相似文献   

16.
17.
The maize b-32 protein is a functional ribosome-inactivating protein (RIP), inhibiting in vitro translation in the cell-free reticulocyte-derived system and having specific N-glycosidase activity on 28S rRNA. Previous results indicated that opaque-2 (o2) mutant kernels, lacking b-32, show an increased susceptibility to fungal attack and insect feeding and that ectopic expression in plants of a barley and a pokeweed RIP leads to increased tolerance to fungal and viral infection. This prompted us to test whether b-32 might functi on as a protectant against pathogens. The b32.66 cDNA clone under the control of the potato wun1 gene promoter was introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Out of 23 kanamycin resistant regenerated shoots, 16 contained a PCR fragment of the corrrect size spanning the boundary between the promoter used and the coding region of the b-32 gene. Eight independently transformed tobacco lines were randomly chosen for protein analysis: all of them expressed b-32 protein. The data presented indicate that transgenic tobacco plants expressing b-32 show an increased tolerance against infection by the soil-borne fungal pathogen Rhizoctonia solani Kuhn  相似文献   

18.
Lim SH  Ko MK  Lee SJ  La YJ  Kim BD 《Molecules and cells》1999,9(6):603-608
The nucleotide sequence of the 3'-terminal region of the Korean isolate of cymbidium mosaic virus (CyMV-Ca) from a naturally infected cattleya was determined. The sequence contains an open reading frame (ORF) coding for the viral coat protein (CP) at the 3'-end and three other ORFs (triple gene block or movement protein) of CyMV. The CP gene encodes a polypeptide chain of 220 amino acids with a molecular mass of 23,760 Da. The deduced CP sequence showed a strong homology with those of two CyMVs reported. A construct of the CyMV-Ca CP gene in the antisense orientation in the plant expression vector pMBP1 was transferred via Agrobacterium tumefaciens-mediated transformation into Nicotiana occidentalis which is a propagation host of CyMV. The T1 progeny of the transgenic plants were inoculated with CyMV and found to be highly resistant to CyMV infection.  相似文献   

19.
In this paper we report the in-planta activity of the ribosome-inactivating protein JIP60, a 60-kDa jasmonate-induced protein from barley (Hordeum vulgare L.), in transgenic tobacco (Nicotiana tabacum L.) plants. All plants expressing the complete JIP60 cDNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited conspicuous and similar phenotypic alterations, such as slower growth, shorter internodes, lanceolate leaves, reduced root development, and premature senescence of leaves. Microscopic inspection of developing leaves showed a loss of residual meristems and higher degree of vacuolation of mesophyll cells as compared to the wild type. When probed with an antiserum which was immunoreactive against both the N- and the C-terminal half of JIP60, a polypeptide with a molecular mass of about 30 kDa, most probably a processed JIP60 product, could be detected. Phenotypic alterations could be correlated with the differences in the detectable amount of the JIP60 mRNA and processed JIP60 protein. The protein biosynthesis of the transformants was characterized by an increased polysome/monosome ratio but a decreased in-vivo translation activity. These findings suggest that JIP60 perturbs the translation machinery in planta. An immunohistological analysis using the JIP60 antiserum indicated that the immunoreactive polypeptide(s) are located mainly in the nucleus of transgenic tobacco leaf cells and to a minor extent in the cytoplasm. Received: 31 July 1996 / Accepted: 18 February 1997  相似文献   

20.
Extracts from apple fruit (cultivar "Granny Smith") inhibited the cell-wall degrading polygalacturonase (PG) activity of Colletotrichum lupini, the causal agent of anthracnose on lupins, as well as Aspergillus niger PG. Southern blot analysis indicated that this cultivar of apple has a small gene family of polygalacturonase inhibiting proteins (pgips), and therefore heterologous expression in transgenic tobacco was used to identify the specific gene product responsible for the inhibitory activity. A previously isolated pgip gene, termed Mdpgip1, was introduced into tobacco (Nicotiana tabacum) by Agrobacterium-mediated transformation. The mature MdPGIP1 protein was purified to apparent homogeneity from tobacco leaves by high salt extraction, clarification by DEAE-Sepharose and cation exchange HPLC. Purified MdPGIP1 inhibited PGs from C. lupini and PGs from two economically important pathogens of apple trees, Botryosphaeria obtusa and Diaporthe ambigua. It did not inhibit the A. niger PG, which was in contrast to the apple fruit extract used in this study. We conclude that there are at least two active PGIPs expressed in apple, which differ in their charge properties and ability to inhibit A. niger PG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号