首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dystrophin constitutes 5% of membrane cytoskeleton in skeletal muscle   总被引:6,自引:0,他引:6  
Dystrophin, which is absent in skeletal muscle of Duchenne muscular dystrophy patients, has not been considered to play a major structural role in the cell membrane of skeletal muscle because of its low abundance (approximately 0.002% of total muscle protein). Here, we have determined the relative abundance of dystrophin in a membrane cytoskeleton preparation and found that dystrophin constitutes approximately 5% of the total membrane cytoskeleton fraction of skeletal muscle sarcolemma. In addition, dystrophin can be removed from sarcolemma by alkaline treatment. Thus, our results have demonstrated that dystrophin is a major component of the subsarcolemmal cytoskeleton in skeletal muscle and suggest that dystrophin could play a major structural role in the cell membrane of skeletal muscle.  相似文献   

3.
A class of recessive lethal zebrafish mutations has been identified in which normal skeletal muscle differentiation is followed by a tissue-specific degeneration that is reminiscent of the human muscular dystrophies. Here, we show that one of these mutations, sapje, disrupts the zebrafish orthologue of the X-linked human Duchenne muscular dystrophy (DMD) gene. Mutations in this locus cause Duchenne or Becker muscular dystrophies in human patients and are thought to result in a dystrophic pathology through disconnecting the cytoskeleton from the extracellular matrix in skeletal muscle by reducing the level of dystrophin protein at the sarcolemma. This is thought to allow tearing of this membrane, which in turn leads to cell death. Surprisingly, we have found that the progressive muscle degeneration phenotype of sapje mutant zebrafish embryos is caused by the failure of embryonic muscle end attachments. Although a role for dystrophin in maintaining vertebrate myotendinous junctions (MTJs) has been postulated previously and MTJ structural abnormalities have been identified in the Dystrophin-deficient mdx mouse model, in vivo evidence of pathology based on muscle attachment failure has thus far been lacking. This zebrafish mutation may therefore provide a model for a novel pathological mechanism of Duchenne muscular dystrophy and other muscle diseases.  相似文献   

4.
5.
Summary We examined the morphological expression of dystrophin in the intrafusal muscle fibers in skeletal muscle from normal human and Duchenne muscular dystrophy (DMD) patients, using antisera against the N-terminal and C-terminal regions of dystrophin. The intrafusal fibers of normal muscle express dystrophin on their cell surface membrane, but those of DMD muscle do not.Abbreviation DMD Duchenne muscular dystrophy  相似文献   

6.
This review is primarily concerned with two key issues in research on dystrophin: (1) how the protein interacts with the plasma membrane of skeletal muscle fibres and (2) how an absence of dystrophin gives rise to Duchenne muscular dystrophy. In relation to the first point, we suggest that the post-translational acylation of dystrophin may contribute to its interaction with the plasma membrane. Regarding the second point, it is generally considered that an absence of dystrophin makes the plasma membrane susceptible to damage by contraction/relaxation cycles. In this connection, we propose that the progressive nature of Duchenne dystrophy, and the phenotypic characteristics of mdx mice, are more consistent with dystrophin functioning as a mechanical transducer that transmits growth stimuli from the enlarging skeleton to the muscle. On the basis of this hypothesis, dystrophin-deficient muscles would be unable to grow at the same rate as the skeleton.  相似文献   

7.
We have found that dystrophin is highly concentrated at neuromuscular junctions and innervated membranes of the electric organ of Torpedo californica. In acetylcholine receptor-rich Torpedo membrane preparations dystrophin represents approximately 0.4% of total protein and can be extracted from these membranes by alkaline treatment in the absence of detergent, indicating that it is a peripheral membrane protein. Polyclonal antibodies raised against electrophoretically isolated Torpedo dystrophin cross-react with dystrophin in human muscle and unequivocally discriminate between normal and Duchenne muscular dystrophy patient's muscle. These results indicate that dystrophin is phylogenetically a highly conserved protein and that the relatively abundant dystrophin in electric organ would facilitate further investigations of its structure and function.  相似文献   

8.
Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene locus, is expressed on the muscle fiber surface. One key to further understanding of the cellular function of dystrophin would be extended knowledge about its subcellular organization. We have shown that dystrophin molecules are not uniformly distributed over the humen, rat, and mouse skeletal muscle fiber surface using three independent methods. Incubation of single-teased muscle fibers with antibodies to dystrophin revealed a network of denser transversal rings (costameres) and finer longitudinal interconnections. Double staining of longitudinal semithin cryosections for dystrophin and alpha-actinin showed spatial juxtaposition of the costameres to the Z bands. Where peripheral myonuclei precluded direct contact of dystrophin to the Z bands the organization of dystrophin was altered into lacunae harboring the myonucleus. These lacunae were surrounded by a dystrophin ring and covered by a more uniform dystrophin veil. Mechanical skinning of single-teased fibers revealed tighter mechanical connection of dystrophin to the plasma membrane than to the underlying internal domain of the muscle fiber. The entire dystrophin network remained preserved in its structure on isolated muscle sarcolemma and identical in appearance to the pattern observed on teased fibers. Therefore, connection of defined areas of plasma membrane or its constituents such as ion channels to single sarcomeres might be a potential function exerted by dystrophin alone or in conjunction with other submembrane cytoskeletal proteins.  相似文献   

9.
Duchenne muscular dystrophy (DMD) is the most common of the human muscular dystrophies, affecting approximately 1 in 3500 boys. Most DMD patients die in their late teens or early twenties due to involvement of the diaphragm and other respiratory muscles by the disease. The primary abnormality in DMD is an absence of dystrophin, a 427 kd protein normally found at the cytoplasmic face of the muscle cell surface membrane. Based upon the predicted structure and location of the protein, it has been proposed that dystrophin plays an important role in providing mechanical reinforcement to the sarcolemmal membrane of muscle fibers. Therefore, dystrophin could help to protect muscle fibers from potentially damaging tissue stresses developed during muscle contraction. In the present paper, the nature of mechanical stresses placed upon myofibers during various forms of muscle contraction are reviewed, along with current lines of evidence supporting a critical role for dystrophin as a subsarcolemmal membrane-stabilizing protein in this setting. In addition, the implications of these findings for exercise programs and other potential forms of therapy in DMD are discussed.  相似文献   

10.
Dystrophin is a high molecular weight protein present at low abundance in skeletal, cardiac and smooth muscle and in trace amounts in brain. In skeletal muscle, dystrophin is uniformly distributed along the inner surface of the plasma membrane. Biochemical fractionation studies have shown that all detectable skeletal muscle dystrophin is tightly associated with a complex of wheat germ agglutinin (WGA)-binding and concanavalin A (Con A) binding sarcolemmal glycoproteins. Absence of dystrophin is the primary biochemical defect in patients with Duchenne muscular dystrophy and leads to segmental necrosis of their skeletal myofibers. Although present in similar amounts in normal cardiac and skeletal muscle, the absence of dystrophin from cardiac muscle has less severe effects on the survival of cardiac cells. We have therefore examined whether there are differences in the properties of cardiac and skeletal dystrophin. We report that in contrast to skeletal muscle, cardiac dystrophin is distributed between distinct pools: a soluble cytoplasmic pool, a membrane-bound pool not associated with WGA-binding glycoproteins and a membrane-bound pool associated with WGA-binding glycoproteins. Cardiac dystrophin was not associated with any Con A binding glycoproteins. Immunohistochemical localization studies in isolated ventricular myocytes reveal a distinct punctate staining pattern for dystrophin, approximating to the level of the transverse tubule/Z-line and contrasting with the uniform sarcolemmal staining reported for skeletal muscle fibers. The distinct properties of cardiac dystrophin suggest unique roles for this protein in cardiac versus skeletal muscle function.Abbreviations Dys Dystrophin - T-tubule Transverse tubule - SDS-PAGE Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis - WGA Wheat Germ Agglutinin - Con A Concanavalin A - DHP Dihydropyridine receptor - FITC Fluorescein Isothiocyanate Conjugate - NAG N-Acetyl-D-Glucosamine - NP-40 NONIDET P-40 - PBS Phosphate-Buffered Saline - TBST Tris Buffered Saline-Tween  相似文献   

11.
Duchenne muscular dystrophy (DMD) is characterized by the absence or reduced levels of dystrophin expression on the inner surface of the sarcolemmal membrane of muscle fibers. Clinical development of therapeutic approaches aiming to increase dystrophin levels requires sensitive and reproducible measurement of differences in dystrophin expression in muscle biopsies of treated patients with DMD. This, however, poses a technical challenge due to intra- and inter-donor variance in the occurrence of revertant fibers and low trace dystrophin expression throughout the biopsies. We have developed an immunofluorescence and semi-automated image analysis method that measures the sarcolemmal dystrophin intensity per individual fiber for the entire fiber population in a muscle biopsy. Cross-sections of muscle co-stained for dystrophin and spectrin have been imaged by confocal microscopy, and image analysis was performed using Definiens software. Dystrophin intensity has been measured in the sarcolemmal mask of spectrin for each individual muscle fiber and multiple membrane intensity parameters (mean, maximum, quantiles per fiber) were calculated. A histogram can depict the distribution of dystrophin intensities for the fiber population in the biopsy. This method was tested by measuring dystrophin in DMD, Becker muscular dystrophy, and healthy muscle samples. Analysis of duplicate or quadruplicate sections of DMD biopsies on the same or multiple days, by different operators, or using different antibodies, was shown to be objective and reproducible (inter-assay precision, CV 2–17% and intra-assay precision, CV 2–10%). Moreover, the method was sufficiently sensitive to detect consistently small differences in dystrophin between two biopsies from a patient with DMD before and after treatment with an investigational compound.  相似文献   

12.
Creatine kinase, cell membrane and Duchenne muscular dystrophy   总被引:1,自引:0,他引:1  
In 1958 Professor Setsuro Ebashi found that serum creatine kinase activity is increased in patients suffering from various muscular dystrophies, especially Duchenne muscular dystrophy (DMD). He and others proposed that creatine kinase passes through the cell membrane as it is released from DMD muscle fibers.Since then, it has been found that dystrophin and dystrophin-associated proteins are connected to several other components, including the basal lamina and subsarcolemmal cytoskeletal networks on the cell membrane, while dystrophin anchors these dystrophin-associated proteins to the actin filaments inside the muscle cell. In DMD muscle, dystrophin has been found to be absent and dystroglycans and sarcoglycans decreased. However, how creatine kinase molecules can pass through the DMD muscle cell membrane still remains unanswered.On the basis of recent findings on the structure of the protein layers which sandwich the lipid bilayer of muscle cell membranes, this essay stresses the importance of these lipid bilayers in protecting creatine kinase release from protoplasma in normal muscle. It further indicates the possibility that the absence of dystrophin in DMD muscle during muscle contraction may result in temporal damage to the lipid bilayer.  相似文献   

13.
14.
The devastating muscle degeneration characteristic of Duchenne muscular dystrophy is caused by mutations in the gene encoding dystrophin. The dystrophin complex has two functions: a structural role in maintaining sarcolemmal integrity during contraction and a scaffolding function that recruits signaling proteins such as neuronal nitric oxide synthase to the membrane. New studies indicate that transgenic restoration of nitric oxide (NO) production in the mdx dystrophic mouse improves muscle pathology. Although NO-mediated killing of inflammatory cells might be involved, other mechanisms are also possible. These results point to the therapeutic potential of manipulating the signaling activity of the dystophin complex as a way to ameliorate the progression of muscle degeneration.  相似文献   

15.
Summary The Duchenne muscular dystrophy gene product dystrophin has been shown to be located on the inside of the plasma membrane. We investigated the developmental expression of dystrophin on rat skeletal muscle plasma membrane with the antiserum raised against a fragment of the polypeptide predicted from the human dystrophin cDNA map [Koenig et al. (1987) Cell 50: 509–517]. Plasma membrane of primary myotubes of the extensor digitorum longus (EDL) muscle was not initially stained by the antiserum; staining began at day 19 of embryonic life, and plasma membrane of all polynuclear muscle cells including secondary myotubes was uniformly stained by day 5 after birth. These immunohistochemical findings were supported by immunoblot analysis. These results indicate that plasma membrane of myotubes at their first appearance is not lined with dystrophin at the detectable level but becomes lined as their development proceeds.  相似文献   

16.
Recent advances in dystrophin research.   总被引:4,自引:0,他引:4  
Evidence suggesting that dystrophin is a component of the membrane cytoskeleton of excitable cells continues to accumulate. Whereas the specific mechanisms leading to muscle pathology in Duchenne muscular dystrophy are still being debated it is apparent that the progressive weakness that occurs in this disease is the result of a chronic process that is initiated by dystrophin deficiency.  相似文献   

17.
Spinal muscular atrophy (SMA) is characterized by degeneration of motor neurons of the spinal cord associated with muscle paralysis and caused by mutations of the survival motor neuron gene (SMN). To determine whether SMN gene defect in skeletal muscle might have a role in SMA pathogenesis, deletion of murine SMN exon 7, the most frequent mutation found in SMA, has been restricted to skeletal muscle by using the Cre-loxP system. Mutant mice display ongoing muscle necrosis with a dystrophic phenotype leading to muscle paralysis and death. The dystrophic phenotype is associated with elevated levels of creatine kinase activity, Evans blue dye uptake into muscle fibers, reduced amount of dystrophin and upregulation of utrophin expression suggesting a destabilization of the sarcolemma components. The mutant mice will be a valuable model for elucidating the underlying mechanism. Moreover, our results suggest a primary involvement of skeletal muscle in human SMA, which may contribute to motor defect in addition to muscle denervation caused by the motor neuron degeneration. These data may have important implications for the development of therapeutic strategies in SMA.  相似文献   

18.
The dystroglycan complex contains the transmembrane protein β-dystroglycan and its interacting extracellular mucin-like protein α-dystroglycan. In skeletal muscle fibers, the dystroglycan complex plays an important structural role by linking the cytoskeletal protein dystrophin to laminin in the extracellular matrix. Mutations that affect any of the proteins involved in this structural axis lead to myofiber degeneration and are associated with muscular dystrophies and congenital myopathies. Because loss of dystrophin in Duchenne muscular dystrophy (DMD) leads to an almost complete loss of dystroglycan complexes at the myofiber membrane, it is generally assumed that the vast majority of dystroglycan complexes within skeletal muscle fibers interact with dystrophin. The residual dystroglycan present in dystrophin-deficient muscle is thought to be preserved by utrophin, a structural homolog of dystrophin that is up-regulated in dystrophic muscles. However, we found that dystroglycan complexes are still present at the myofiber membrane in the absence of both dystrophin and utrophin. Our data show that only a minority of dystroglycan complexes associate with dystrophin in wild type muscle. Furthermore, we provide evidence for at least three separate pools of dystroglycan complexes within myofibers that differ in composition and are differentially affected by loss of dystrophin. Our findings indicate a more complex role of dystroglycan in muscle than currently recognized and may help explain differences in disease pathology and severity among myopathies linked to mutations in DAPC members.  相似文献   

19.
Null mutation of any one of several members of the dystrophin protein complex can cause progressive, and possibly fatal, muscle wasting. Although these muscular dystrophies arise from mutation of a single gene that is expressed primarily in muscle, the resulting pathology is complex and multisystemic, which shows a broader disruption of homeostasis than would be predicted by deletion of a single-gene product. Before the identification of the deficient proteins that underlie muscular dystrophies, such as Duchenne muscular dystrophy (DMD), oxidative stress was proposed as a major cause of the disease. Now, current knowledge supports the likelihood that interactions between the primary genetic defect and disruptions in the normal production of free radicals contribute to the pathophysiology of muscular dystrophies. In this review, we focus on the pathophysiology that results from dystrophin deficiency in humans with DMD and the mdx mouse model of DMD. Current evidence indicates three general routes through which free radical production can be disrupted in dystrophin deficiency to contribute to the ensuing pathology. First, constitutive differences in free radical production can disrupt signaling processes in muscle and other tissues and thereby exacerbate pathology. Second, tissue responses to the presence of pathology can cause a shift in free radical production that can promote cellular injury and dysfunction. Finally, behavioral differences in the affected individual can cause further changes in the production and stoichiometry of free radicals and thereby contribute to disease. Unfortunately, the complexity of the free radical-mediated processes that are perturbed in complex pathologies such as DMD will make it difficult to develop therapeutic approaches founded on systemic administration of antioxidants. More mechanistic knowledge of the specific disruptions of free radicals that underlie major features of muscular dystrophy is needed to develop more targeted and successful therapeutic approaches.  相似文献   

20.
Abnormalities of calcium homeostasis are involved in the process of cell injuries such as Duchenne muscular dystrophy characterized by the absence of the protein dystrophin. But how the absence of dystrophin leads to cytosolic calcium overload is as yet poorly understood. This question has been addressed with skeletal muscle cells from human DMD muscles or mdx mice. Although easier to obtain than human muscles, mdx muscle cells have provided controversial data concerning the resting intracellular calcium level ([Ca2+](i)). This work describes the culture of Sol8 cell line that expresses neither dystrophin nor adhalin, a dystrophin-associated protein. The [Ca2+](i)and intracellular calcium transients induced by different stimuli (acetylcholine, caffeine and high potassium) are normal during the first days of culture. At later stages, calcium homeostasis exhibits drastic alterations with a breaking down of the calcium responses and a large [Ca2+](i)elevation. Concomitantly, Sol8 cells exhibit morphological signs of cell death like cytoplasmic shrinkage and incorporation of propidium iodide. Cell death could be significantly reduced by blocking the activity of calpains, a type of calcium-regulated proteases. These results suggest that Sol8 cell line provides an alternative model of dystrophin-deficient skeletal muscle cells for which a clear disturbance of the calcium homeostasis is observed in culture in association with calpain-dependent cell death. It is shown that transfection with a plasmid cDNA permits the forced expression of dystrophin in Sol8 myotubes as well as a correct sorting of the protein. This approach could be used to explore possible interactions between dystrophin deficiency, calcium homeostasis alteration, and dystrophic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号