首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature and food quality both can influence growth rates and developmental time of herbivorous insects and mites. Typhlodromus athenas Swirski and Ragusa is an indigenous mite in the Mediterranean region and data on its temperature dependent development are lacking. In the current study, temperature-dependent development and survival of T. athenas immature stages were evaluated on eggs and all stages of Tetranychus urticae Koch, as well as on almond (Prunus amygdalis Batsch) pollen, under seven constant temperatures ranging from 15 to 35°C, 65% RH, and a photoperiod of 16:8 (L:D) h. On both diets survival was considerably high at all temperatures. The longest developmental period of immature stages was recorded at 15°C, whereas the shortest was at 30°C. Female immatures on almond pollen had shorter developmental time compared to that on twospotted spider mites. Food had a significant effect on female total developmental time at temperatures lower than 25°C. The lower developmental thresholds, estimated by a linear model, for egg-to-adult of females and males fed on pollen were 8.60 and 8.77°C, respectively, whereas on T. urticae they were 10.15 and 10.62°C, respectively. Higher values of tmin for total development were estimated by a nonlinear model (Lactin-2), and ranged from 10.21°C for both females and males on almond, to 11.07 for females and 10.78°C for males on prey. Moreover, this model estimated optimal and lethal temperatures accurately. The results of this study indicate that T. athenas appears better adapted to higher temperatures that occur in the Mediterranean region and may be a useful biological control agent.  相似文献   

2.
Heterochrony, evolutionary changes in developmental rates and timing, is a key concept in the construction of a synthesis of development and evolution. Heterochronic changes in vertebrate evolution have traditionally been identified through plesiomorphic-apomorphic comparisons of bone growth. This methodological framework assumes that observed heterochronies are the outcome of dissociations of developmental processes in time. Recent findings of non-heterochronic developmental changes underlying morphological heterochrony invalidate this assumption. In this paper, a function for bone growth (at the organ level) has been mathematically deduced from the underlying developmental mechanisms. The temporal domain of the model spans from the time at maximum growth rate, after the formation of growth plates, to the time at atrophy of the proliferating stratum of cells. Three organizational levels were considered: (a) cell kinetics of endochondral ossification, (b) variation of bone growth rates and (c) variation of accumulated bone growth with increasing age. This quantitative model provides an excellent tool to deal with the problem of the developmental basis of morphological change. I have modelled potential evolutionary changes on the system at different levels of biological organization. This new framework involves an epistemological shift in heterochronic analysis from a pattern-oriented inductive way to a process-oriented deductive way. The analysis of the relationships between the evolutionary alterations of endochondral ossification and the morphological expression of these changes reveals that observed pattern heterochronies can be the outcome of different process heterochronies. Moreover, I discuss at length the heteroposic hypothesis, that evolutionary changes in the tight regulation of the amount of protein synthesized by a cell population during development would underlie acceleration or deceleration in cases of evolutionary changes in the initial number of proliferating cells at growth plates. Future research on the genetic basis of process heterochronies and heteroposies will complete our understanding of these evolutionary phenomena.  相似文献   

3.
A phenology simulation model was developed for Scotinophara lurida (Burmeister). The components for the model were a degree-day immigration flight model of overwintered adults, temperature-dependent developmental models of each stage, survival rates of each stage, and an adult oviposition model. A degree-day model for immigration flight of overwintered adults was developed with blacklight trap catch data by a Weibull function. Laboratory experiments using seven constant temperature regimens were conducted to determine the effect of temperature on the development of immature stages. Developmental rates of each immature stage fit well to a linear model. Distribution of developmental time for each immature stage was successfully modeled against physiological age by a Weibull function. To determine the temperature effect on longevity, fecundity, and survival of female adults, laboratory and greenhouse experiments were conducted. The adult developmental rate (1/median longevity) was described by a linear model. The oviposition model was developed incorporating the three components of average total fecundity, cumulative oviposition rate function, and survival rate function. The simulation model predicted the time of peak occurrences of life stages of S. lurida well.  相似文献   

4.
Laboratory studies were conducted to assess the effect of temperature on the development and survival of the indigenous parasitoid Pnigalio pectinicornis L. on the citrus leaf miner Phyllocnistis citrella Stainton as host, fed on leaves of Citrus sinensis L. Osbck cultivar Washington navel and Citrus reticulata Blanco cultivar Clementine. Experiments were conducted at five constant temperatures ranging from 15 to 32.5 degrees C, with 60 +/- 10% RH and a photoperiod of 14:10 (L:D) h. The relationship between the developmental rate and temperature was determined using both linear and nonlinear (Lactin's formula) models. Developmental time of immature stages tended to be shorter as the temperature increased the range from 15 to 30 degrees C. Mortality was greater at the temperatures extreme tested. Both linear and nonlinear models provided a reliable fit of developmental rates versus temperature for all immature stages. Developmental thresholds that were estimated by the linear model for eggs were higher than those estimated by the nonlinear model. However, higher values of the low developmental threshold for larva and pupa stage of P. pectinicornis were estimated by the Lactin-2 model than that by the linear model. The potential of these models to predict the phenology of this parasitoid and its biological characteristics found in this study are discussed for its proper use as a biological control agent.  相似文献   

5.
The developmental rates of Oulema duftschmidi (Redtenbacher) eggs, larvae, and pupae were studied at different constant temperatures. A linear regression model was fitted to the data obtained in this and in a previous study within a temperature range where the rate proportionally increases with temperature. Ratios of SEs to the mean thermal constant and to the mean developmental threshold indicated that reliable estimates have been obtained for the three life stages. Within the framework provided by the metabolic theory of ecology, a growth-based model was evaluated to explain developmental rates in the entire temperature range permissive of development of the three life stages. The model is based on component functions describing growth patterns through time, temperature-dependent consumption rates of biomass, transformation of consumed food into body biomass change, and respiration rates with respect to temperature. Experimental data were used for the selection and validation of models and for the estimation of the parameters of different regression models. Limitations and opportunities for using the growth-based model to explain developmental rates are discussed. An empirical function was used to describe the variability of developmental rates.  相似文献   

6.
Studies of development time of marine and freshwater copepods have taken separate tracks. Most studies on marine copepods report development time of each individual development stage, whereas studies on freshwater copepods report only development time, from egg to nauplius and nauplius to adult. This bias allows comparison of total development time but prevents detailed comparisons of patterns in stage-specific developmental schedules. With respect to egg to adult development time, three general relationships are known: developmental rates are dependent upon temperature and food concentration but independent of terminal body size; freshwater calanoids develop significantly slower than marine calanoids; freshwater cyclopoids develop at the same rate as marine calanoids. Two rules describe stage-specific developmental rates: the equiproportional rule and the isochronal rule. The first rule states that the duration of a given life history stage is a constant proportion of the embryonic development time; the second rule states that the time spent in each stage is the same for all stages. This review focuses on the second rule. From the 80+ published studies of copepod stage-specific developmental times, no species follows the isochronal rule strictly: Acartia spp. come closest with isochronal development from third nauplius (N3) to fourth copepodite (C4). The only pattern followed by all species is rapid development of the first and/or second naupliar stages, slow development of the second and/or third nauplius and prolonged development of the final copepodite stage. Once adulthood is reached, males are usually short-lived, but females can live for weeks to months in the laboratory. Adult longevity in the sea is, however, on the order of only a few days. The evolution of developmental patterns is discussed in the context of physiological constraints, along with consideration of possible relationships between stage-specific mortality rates and life history strategies. Physiological constraints may operate at critical bottlenecks in development (e.g. at the first feeding nauplius, N6, and the fifth copepodite stage). High mortality of eggs may explain why broadcast eggs hatch 2–3 times faster than eggs carried by females in a sac; high mortality of adults may explain why adults do not grow rather they maximize their reproductive effort by partitioning all energy for growth into egg production.  相似文献   

7.
Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains.  相似文献   

8.
The free-living mite species Sancassania rodionovi (Zachvatkin) (Acari: Acaridae), is a serious pest of mushrooms in Iran. Studies were conducted to examine the development of this mite in relation to temperature on two mushroom species: Agaricus bisporus Lange (button mushroom) and Pleurotus ostreatus Kummer (oyster mushroom). The developmental time of this acarid mite was studied at eight constant temperatures, ranging from 5 to 40 degrees C, and developmental rates were modeled as a function of temperature. Sancassania rodionovi completed immature development in 17.35 +/- 0.58 and 20.17 +/- 0.88 d at 25 degrees C on button and oyster mushrooms, respectively. When the mite fed on button mushroom, the rate of development increased gradually from 10 to 35 degrees C. Using a linear model, the developmental zero was estimated to be 3.50 degrees C with a thermal constant of 357.14 degree-days. The Logan 10, Briere 1, and Thermodynamic models adequately described the data for this mite and yielded R2 values >0.95; these models provided estimates of optimum temperature for development of 33.244, 32.145, and 32.148 degrees C, respectively. Understanding the influence of temperature on development of S. rodionovi is discussed with respect to pest management in mushroom production.  相似文献   

9.
ABSTRACT. The initiation and pattern of embryonic development in Leptophyes punctatissima (Bosc) (Tettigoniidae) are shown to be variously dependent on temperature. Immediate high temperature (30°C) facilitated rapid and direct embryogenesis to the stage of diapause in the fully formed embryo. Slightly lower temperature (25°C) resulted in a delay before embryogenesis started, and this delay was greatly extended as an initial diapause if incubation temperatures were decreased (20-16°C). Still lower initial temperatures (8–12°C) facilitated subsequent development at 20–30°C. These responses all increased as a function of exposure time. Once initiated, the rate of development was temperature dependent, but competence to tolerate high temperature, and ability to continue development at low temperatures, changed with age. In general, the developmental temperature range appears to be lowered with age. None of these different treatments had any effect on the late embryonic diapause. According to the temperatures prevailing at oviposition, Leptophyes could be an annual or a biennial species; the biennial pattern is normal.  相似文献   

10.
SYNOPSIS. Marine invertebrates develop in waters that extendfrom the poles to the equator, experiencing the full range ofenvironmental temperature and food conditions. How selectionhas modified their development under the influence of thesetwo factors has been a matter of debate. In this paper we arguethat the primary influence on developmental rate is temperature,while other factors such as food availability are much lessimportant. From existing literature we demonstrate that (1)developmental rates of both lecithotrophic and planktotrophicasteroids decrease in a similar way from the tropics to thepoles, as they do also in other groups of invertebrates (echinoids,molluscs, crustaceans), and (2) rates of development at anyone temperature cluster around the function describing the effectof temperature, without any relationship to egg size, suggestingthat developmental rates are near the maximum for a given temperatureregardless of other variables such as nutrition. We also investigatedthe response of development to temperature in four species ofplanktotrophic asteroids, one tropical, one temperate, two polar.There was limited temperature compensation among these fourspecies, but little or no apparent ability to compensate forthe retarding effects of reduced temperature within species.Arrhenius analysis of the data suggests that Q10 values forthe upper region of each species' tolerance range are approximately2, indicating that enzyme-based reactions have evolved to beclosely integrated with uncatalyzed, temperature-dependent,physicalchemical processes. Values of Q10 at lower regions ofthe tolerance range, on the other hand, range between 9.5 and14.7, indicative of abrupt temperature-dependent shifts in reactionequilibria, or in the organization of macromolecules and membranes.We conclude that temperature itself, rather than egg size, food,or other variables, best explains observed latitudinal differencesin developmental rates in marine invertebrates.  相似文献   

11.
Proprioseiopsis asetus (Chant) (Acari: Phytoseiidae) is a relatively unknown predacious mite with potential as a biological control agent of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and Tetranychus urticae Koch (Acari: Tetranychidae). In this study, the developmental rate and other biological parameters of P. asetus were investigated. Development of P. asetus was temperature dependent from 10 to 40°C. Nonlinear models were fitted to development rate (1/time) data from egg to adult and by sex to estimate development times. The model of Sharpe and De Michele (1977) best fits the developmental data. The shortest development time on cattail (Typha latifolia (L.)) pollen occurred at 35°C for all stages except for the egg stage, for which it was longer. The optimum development time at 35°C is above the temperature optimum of most phytoseiid mites. Fecundity increased when P. asetus mated more than once. Males were needed at all times for maximum oviposition, although their consumption was negligible. Oviposition, prey killed (Franklinella occidentalis or T. urticae) and longevity of P. asetus females were recorded in the presence of males. Egg production increased with number of prey killed and P. asetus has the characteristics of successful predators of thrips.  相似文献   

12.
Abstract Predicting the population dynamics of insects in natural conditions is essential for their management or preservation, and temperature‐dependent development models contribute to achieving this. In this research the effects of temperature and soil moisture content on egg development and hatching of Clavipalpus ursinus (Blanchard) were evaluated. The eggs were exposed to seven temperature treatments with averages of 7.2, 13.0, 15.5, 19.7, 20.6, 22.0 and 25.3°C, in combination with three soil moisture contents of 40%, 60% and 80%. A linear and two non‐linear (Lactin and Briere) models were evaluated in order to determine the thermal requirements of this developmental stage. Temperature affected significantly the time of development and egg hatching, while no significant effect was observed for moisture content. Thermal requirements were set as: 7.2°C for lower developmental threshold, 20.6°C for optimum developmental threshold, 25.3°C for maximum temperature and 344.83 degree‐days for the thermal constant. The linear model described satisfactorily egg development at intermediate temperatures; nevertheless, a slightly better fit of the observed data was obtained with the Lactin model. Egg development took place inside a narrow range of temperatures. Consequently, an increment of soil temperature could generate a negative impact on the population size of this species or changes in its biological parameters.  相似文献   

13.
The metabolic theory of ecology (MTE) states that metabolic rate, ruled mainly by individual mass and temperature, determines many other biological rates. This view of ecology as ruled by the laws of physics and thermodynamics contrasts with life-history-optimization (LHO) theories, where traits are shaped by evolutionary processes. Integrating the MTE and LHO can lead, however, to a synthetic theory of ecology. In this work, we link the two theories to show that offspring development time is the result of both maternal investment in offspring and the metabolic constraints on offspring growth. We formulate a model that captures how offspring development time is the consequence of both offspring growth rate, determined by temperature and allometric scaling in accordance with the MTE, and the size reached by offspring at the end of the developmental period, determined mainly by LHO and reproductive strategies. We first extend the trade-off between offspring size and offspring number to ectotherms, showing that increased body temperatures result in increased resources available for reproduction. We then combine this trade-off with the general ontogenetic growth model to show that there is a trade-off between the number of offspring produced and offspring development time. The model predicts a shorter developmental time in organisms producing larger numbers of offspring.  相似文献   

14.
Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the “hotter is better” hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The remaining unexplained variation in development time likely reflects additional ecological and evolutionary differences among insect species.  相似文献   

15.
Abstract 1 We conducted a laboratory experiment to quantify the stage‐specific effects of temperature on development time and survival of Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae), a serious economic pest of horticultural crops. Quantification of the relationship between stage development and temperature is required to predict seasonal occurrence of particular life stages and to optimize the timing of monitoring and control tactics. 2 Temperature‐dependent survival rate was quantified using an extreme value function and showed a skewed bell shape, due to the vulnerability of the insect to high temperature in all stages. 3 The development times of O. sulcatus decreased with increasing temperature up to 27 °C for eggs and 24 °C for larvae and pupae. The nonlinear relationship between development rate and temperature was described using the Logan model, and enabled us to estimate the optimum temperature for development. 4 The inherent variation of development time was estimated from the cumulative frequency of stage emergence, which was modelled using the cumulative Weibull function. 5 The stage emergence model, which simulated the transition from one stage to the next in relation to temperature and cohort age, was constructed by incorporating stage‐specific survival and development rate submodels with the Weibull model of stage frequency. 6 Our results show a difference in optimal temperature regime among developmental stages of O. sulcatus.  相似文献   

16.
The impact of temperature on developmental duration of insects has been long kept a high profile in the studies of insect pests. The relationship between developmental rate, which is the reciprocal of developmental duration, is generally represented by a straight line over a range of moderate temperature; over two ranges of extreme temperature (i.e., low temperatures and high temperatures), the relationship cannot be accurately reflected by a straight line (Campbell et al., 1974). For describing the effect of constant temperature on developmental rate over the full range of temperature, some non-linear models were proposed. To analyze the effect of temperature on ectothermic performance, twelve non-linear functions, including Gaussian, Logan1, Logan2, Performance, Wang–Lan–Ding, Sharpe–Schoolfield, Ratkowsky, Brière1, Brière2, Weibull, modified Gaussian and exponentially modified Gaussian functions, are compared using the coefficient of determination, adjusted coefficient of determination, Akaike information criterion (AIC), Bayesian information criterion (BIC), corrected Akaike information criterion (AICC) and a new method best on a weighted average of the five listed indicators. These models were compared using the development rate data of two species of insects at the egg stage. We found that the Performance, Brière1 and Brière2 functions are all very suitable for explaining temperature-dependent development rates. The three functions both belong to the asymmetrical skew thermal performance curves, and show better goodness-of-fit than the symmetrical Gaussian function. The Performance function might be the best function, because it can reflect the linearity between temperatures and developmental rates below the optimal developmental temperature.  相似文献   

17.
BACKGROUND: Aberrations during neurulation due to genetic and/or environmental factors underlie a variety of adverse developmental outcomes, including neural tube defects (NTDs). Methylmercury (MeHg) is a developmental neurotoxicant and teratogen that perturbs a wide range of biological processes/pathways in animal models, including those involved in early gestation (e.g., cell cycle, cell differentiation). Yet, the relationship between these MeHg‐linked effects and changes in gestational development remains unresolved. Specifically, current information lacks mechanistic comparisons across dose or time for MeHg exposure during neurulation. These detailed investigations are crucial for identifying sensitive indicators of toxicity and for risk assessment applications. METHODS: Using a systems‐based toxicogenomic approach, we examined dose‐ and time‐dependent effects of MeHg on gene expression in C57BL/6 mouse embryos during cranial neural tube closure, assessing for significantly altered genes and associated Gene Ontology (GO) biological processes. Using the GO‐based application GO‐Quant, we quantitatively assessed dose‐ and time‐dependent effects on gene expression within enriched GO biological processes impacted by MeHg. RESULTS: We observed MeHg to significantly alter expression of 883 genes, including several genes (e.g., Vangl2, Celsr1, Ptk7, Twist, Tcf7) previously characterized to be crucial for neural tube development. Significantly altered genes were associated with development cell adhesion, cell cycle, and cell differentiation–related GO biological processes. CONCLUSIONS: Our results suggest that MeHg‐induced impacts within these biological processes during gestational development may underlie MeHg‐induced teratogenic and neurodevelopmental toxicity outcomes. Birth Defects Res (Part B) 89:188–200, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
This study investigated the effect of temperature on the development and overwintering potential of the predatory thrips Franklinothrips vespiformis (Crawford) (Thysanoptera: Aeolothripidae), a biological control agent used against glasshouse pests in continental Europe and Israel. Developmental rates increased linearly with rearing temperatures. It was estimated that 304.9 degree days, above a lower threshold temperature of 11.9 °C, were required for F. vespiformis to complete development from egg to adult eclosion. The effect of low temperatures (–5, 0, and 5 °C) was examined on adult female and larval survival. Subsequent reproductive and developmental attributes of survivors were also investigated. Lethal time experiments indicated that larval stages are more cold tolerant than adult F. vespiformis females. Surviving larvae increased their developmental times to adults with decreasing temperature and increasing exposure periods and second instars were significantly more successful than first instars in reaching adulthood. Surviving adult females decreased their oviposition rate with decreasing temperature and increasing exposure periods, and exposures to low temperatures affected the number of viable eggs produced. The results are discussed in the context of overwintering and establishment potential of F. vespiformis in the UK in the event of introducing the predatory thrips as a biological control agent against glasshouse pests.  相似文献   

19.
Adaptive genetic differentiation along a climatic gradient as a response to natural selection is not necessarily expressed at phenotypic level if environmental effects on population mean phenotypes oppose the genotypic effects. This form of cryptic evolution--called countergradient variation--has seldom been explicitly demonstrated for terrestrial vertebrates. We investigated the patterns of phenotypic and genotypic differentiation in developmental rates of common frogs (Rana temporaria) along a ca. 1600 km latitudinal gradient across Scandinavia. Developmental rates in the field were not latitudinally ordered, but displayed large variation even among different ponds within a given latitudinal area. In contrast, development rates assessed in the laboratory increased strongly and linearly with increasing latitude, suggesting a genetic capacity for faster development in the northern than the southern larvae. Experiments further revealed that environmental effects (temperature and food) could easily override the genetic effects on developmental rates, providing a possible mechanistic explanation as to why the genetic differentiation was not seen in the samples collected from the wild. Our results suggest that the higher developmental rates of the northern larvae are likely to be related to selection stemming from seasonal time constrains, rather than from selection dictated by low ambient temperatures per se. All in all, the results provide a demonstration of environmental effects concealing substantial latitudinally ordered genetic differentiation understandable in terms of adaptation to clinal variation in time constrains.  相似文献   

20.
Because biological responses to radiation are complex processes that depend on both irradiation time and total dose, consideration of both dose and dose rate is necessary to predict the risk from long-term irradiations at low dose rates. Here we mathematically and statistically analyzed the quantitative relationships between dose, dose rate and irradiation time using micronucleus formation and inhibition of proliferation of human osteosarcoma cells as indicators of biological response. While the dose-response curves did not change with exposure times of less than 20 h, at a given dose, both biological responses clearly were reduced as exposure time increased to more than 8 days. These responses became dependent on dose rate rather than on total dose when cells were irradiated for 20 to 27 days. Mathematical analysis demonstrates that the relationship between effective dose and dose rate is well described by an exponential function when the logarithm of effective dose is plotted as a function of the logarithm of dose rate. These results suggest that our model, the modified exponential (ME) model, can be applied to predict the risk from exposure to low-dose/low-dose-rate radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号