首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fly》2013,7(3):236-240
Bicoid (Bcd) functions as a morphogen during Drosophila development. Accordingly, bcd mRNA is maternally localized to the anterior pole of the embryo, and Bcd forms an anterior/posterior gradient, which functions in a concentration dependent fashion. Thus, nuclei receiving identical amounts of Bcd should express the same target genes. However, we found that ectopic, uniform expression of Bcd causes anterior gene expression in the posterior with mirror image polarity, indicating that one or several additional factors must provide positional information. Recently, we have shown that one of these factors is Capicua (Cic), a ubiquitous maternal repressor that is down-regulated at the embryonic termini by maternal Torso, a key component of the maternal terminal system. Cic acts on Bcd dependent enhancer elements by repression and thereby controls the posterior limit of Bcd target gene expression. Based on these new findings, we propose that spatial control of gene expression in the anterior region of the embryo is not solely the result of Bcd morphogen action. Rather, it relies on a "morphogenic network" that integrates the terminal system and Bcd activities, providing both polarity and spatial information to the prospective head region of the developing embryo.  相似文献   

2.
3.
Chen H  Xu Z  Mei C  Yu D  Small S 《Cell》2012,149(3):618-629
The homeodomain (HD) protein Bicoid (Bcd) is thought to function as a gradient morphogen that positions boundaries of target genes via threshold-dependent activation mechanisms. Here, we analyze 66 Bcd-dependent regulatory elements and show that their boundaries are positioned primarily by repressive gradients that antagonize Bcd-mediated activation. A major repressor is the pair-rule protein Runt (Run), which is expressed in an opposing gradient and is necessary and sufficient for limiting Bcd-dependent activation. Evidence is presented that Run functions with the maternal repressor Capicua and the gap protein Kruppel as the principal components of a repression system that correctly orders boundaries throughout the anterior half of the embryo. These results put conceptual limits on the Bcd morphogen hypothesis and demonstrate how the Bcd gradient functions within the gene network that patterns the embryo.  相似文献   

4.
In the follicle cell (FC) epithelium that surrounds the Drosophila egg, a complex set of cell signals specifies two cell fates that pattern the eggshell: the anterior centripetal FC that produce the operculum and the posterior columnar FC that produce the main body eggshell structure. We have previously shown that the long-range morphogen DPP represses the expression of the bunched (bun) gene in the anterior-most centripetal FC. bun, which encodes a homolog of vertebrate TSC-22/GILZ, in turn represses anterior gene expression and antagonizes Notch signaling to restrict centripetal FC fates in posterior cells. From a screen for novel targets of bun repression we have identified the C/EBP homolog slow border cells (slbo). At stage 10A, slbo expression overlaps bun in anterior FC; by stage 10B they repress each other's expression to establish a sharp slbo/bun expression boundary. The precise position of the slbo/bun expression boundary is sensitive to Notch signaling, which is required for both slbo activation and bun repression. As centripetal migration proceeds from stages 10B-14, slbo represses its own expression and both slbo loss-of-function mutations and overexpression approaches reveal that slbo is required to coordinate centripetal migration with nurse cell dumping. We propose that in anterior FC exposed to a Dpp morphogen gradient, high and low levels of slbo and bun, respectively, are established by modulation of Notch signaling to direct threshold cell fates. Interactions among Notch, slbo and bun resemble a conserved signaling cassette that regulates mammalian adipocyte differentiation.  相似文献   

5.
Summary

This review deals with the question of how cells in the early embryo of the pea-beetle differentiate into a sequential pattern of segments. Anterior and posterior fragments of an egg have different options for development depending on whether they are exposed, before cellularization, to decaying ooplasm in the complementary fragment. Without such exposure all fragments produce fewer segments than corresponding fragments obtained at cellularization. With exposure a fraction of anterior and posterior fragments produces considerably more segments than corresponding fragments obtained at cellularization. In addition, posterior fragments are uniquely different from anterior ones in that they also produce reversal of segment sequence which can be restricted to longitudinal strips of the larval cuticle.

The difference in reaction to decaying ooplasm between anterior and posterior fragments suggests an asymmetry in the control of metamerization. Lateral inhibition by an asymmetric gradient of a diffusible morphogen can describe these observations [18] except for the restriction of reversal to longitudinal strips. The latter requires either that morphogen transport be polarized, possibly by a voltage gradient in the egg, or that the interpretation of cell position is polarized. The induction of double abdomens with UV-light and RNase suggests that RNA is part of the control mechanism. This and strip-restricted reversal are features shared by eggs of Coleoptera and Diptera.  相似文献   

6.
7.
8.
The bicoid (bcd) protein in a Drosophila embryo is derived from an anteriorly localized mRNA and comes to be distributed in an exponential concentration gradient along the anteroposterior axis. To determine whether the levels of bcd protein are directly related to certain cell fates, we manipulated the density and distribution of bcd mRNA by genetic means, measured the resultant alterations in height and shape of the bcd protein gradient, and correlated the gradient with the fate map of the respective embryos. Increases or decreases in bcd protein levels in a given region of the embryo cause a corresponding posterior or anterior shift of anterior anlagen in the embryo. The bcd protein thus has the properties of a morphogen that autonomously determines positions in the anterior half of the embryo.  相似文献   

9.
Liu W  Niranjan M 《PloS one》2011,6(9):e24896
The Bicoid morphogen is amongst the earliest triggers of differential spatial pattern of gene expression and subsequent cell fate determination in the embryonic development of Drosophila. This maternally deposited morphogen is thought to diffuse in the embryo, establishing a concentration gradient which is sensed by downstream genes. In most model based analyses of this process, the translation of the bicoid mRNA is thought to take place at a fixed rate from the anterior pole of the embryo and a supply of the resulting protein at a constant rate is assumed. Is this process of morphogen generation a passive one as assumed in the modelling literature so far, or would available data support an alternate hypothesis that the stability of the mRNA is regulated by active processes? We introduce a model in which the stability of the maternal mRNA is regulated by being held constant for a length of time, followed by rapid degradation. With this more realistic model of the source, we have analysed three computational models of spatial morphogen propagation along the anterior-posterior axis: (a) passive diffusion modelled as a deterministic differential equation, (b) diffusion enhanced by a cytoplasmic flow term; and (c) diffusion modelled by stochastic simulation of the corresponding chemical reactions. Parameter estimation on these models by matching to publicly available data on spatio-temporal Bicoid profiles suggests strong support for regulated stability over either a constant supply rate or one where the maternal mRNA is permitted to degrade in a passive manner.  相似文献   

10.
11.
12.
13.
BACKGROUND: Planar polarity refers to the asymmetry of a cell within the plane of the epithelium; for example, cells may form hairs that point in a posterior direction, or cilia may beat in one way. This property implies that cells have information about their orientation; we wish to understand the nature of this information. Relevant also is the body plan of insects, which, in the ectoderm and somatic mesoderm, consists of a chain of alternating anterior and posterior compartments - basic units of development with independent cell lineage and subject to independent genetic control.RESULTS: Using the abdomen of adult Drosophila, we have taken genes required for normal polarity and either removed the gene or constitutively expressed it in small clones of cells and observed the effects on polarity. Hitherto, all such studies of polarity genes have not found any difference of behavior between the different compartments. We report here that the three genes, four-jointed, dachsous, and fat, cause opposite effects in anterior and posterior compartments. For example, in anterior compartments, clones ectopically expressing four-jointed reverse the polarity of cells in front of the clone, while, in posterior compartments, they reverse behind the clone. These three genes have been reported by others to be functionally linked.CONCLUSIONS: This discovery impacts on models of how cells read polarity. At the heart of one class of models is the hypothesis that cell polarity is determined by the vector of a morphogen gradient. Here, we present evidence that cell polarity in the abdomen depends on at least two protein gradients (Fj and Ds), each of which is reflected at compartment borders. Consequently, these gradients have opposing slopes in the two compartments. Because all polarized structures made by abdominal cells point posteriorly, we surmise that cells in each compartment are programmed to interpret these protein gradients with opposite signs, pointing up the gradient in one compartment and down the gradient in the other.  相似文献   

14.
In early development much of the cellular diversity and pattern formation of the embryo is believed to be set up by morphogens. However, for many morphogens, including members of the TGF-beta superfamily, the mechanism(s) by which they reach distant cells is unknown. We have used immunofluorescence to detect, at single cell resolution, a morphogen gradient formed across vertebrate tissue. The TGF-beta ligand is distributed in a gradient visible up to 7 cell diameters (about 150-200 microm) from its source, and is detectable only in the extracellular space. This morphogen gradient is functional, since we demonstrate activation of a high response gene (Xeomes) and a low-response gene (Xbra) at different distances from the TGF-beta source. Expression of the high affinity type II TGF-beta receptor is necessary for detection of the gradient, but the shape of the gradient formed only depends in part on the spatial variation in the amount of receptor. Finally, we demonstrate that the molecular processes that participate in forming this functional morphogen gradient are temperature independent, since the gradient forms to a similar extent whether the cells are maintained at 4 degrees C or 23 degrees C. In contrast, TGF-beta1 internalisation by cells of the Xenopus embryo is a temperature-dependent process. Our results thus suggest that neither vesicular transcytosis nor other active processes contribute to a significant extent to the formation of the morphogen gradient we observe. We conclude that, in the model system used here, a functional morphogen gradient can be formed within a few hours by a mechanism of passive diffusion.  相似文献   

15.
The secondary phloem of dicotyledonous trees and shrubs is constructed of sieve tube cells (S) and their companion cells, as well as parenchyma (P) and fibre (F) cells. Different species have characteristic sequences of these S, P and F cells within the radial files of their phloem. The sequences are recurrent, and are evidence of rhythmic cell determination and differentiation. A model was devised to account for the sequences found in various dicot tree species. It is based on the pattern of radial displacement of cells through a gradient of morphogen which supports secondary phloem development. According to this model, each tree species shows a particular pattern of post-mitotic cellular displacement along each radial file as a result of a corresponding sequence of periclinal division in the cambial initial and its descendents. The divisions and displacements ensure that at each timestep (equivalent to an interdivisional interval) each cell resides in a specific location within the morphogenic gradient. Cells then emerge from the post-mitotic zone of cell determination, having acquired different final positional values. These values lie above a series of thresholds that permit the respective determination and subsequent differentiation of one or other of the three cell types S, P and F. The recurrent nature of the sequences of the three cell types within each radial cell file, as well as their tangential banding, are a consequence of a shared rhythmic spatio-temporal pattern of periclinal cambial divisions. With a single set of morphogen parameters required for cell determination, and using three positions for cambial cell divisions, all the cellular sequences of secondary phloem illustrated in the literature can be accounted for.This is an invited article.  相似文献   

16.
Morphogen gradients play a key role in multiple differentiation processes. Both the formation of the gradient and its interpretation by the receiving cells need to occur at high precision to ensure reproducible patterning. This need for quantitative precision is challenged by fluctuations in the environmental conditions and by variations in the genetic makeup of the developing embryos. We discuss mechanisms that buffer morphogen profiles against variations in gene dosage. Self-enhanced morphogen degradation and pre-steady-state decoding provide general means for buffering the morphogen profile against fluctuations in morphogen production rate. A more specific “shuttling” mechanism, which establishes a sharp and robust activation profile of a widely expressed morphogen, and enables the adjustment of morphogen profile with embryo size, is also described. Finally, we consider the transformation of the smooth gradient profile into sharp borders of gene expression in the signal-receiving cells. The integration theory and experiments are increasingly used, providing key insights into the system-level functioning of the developmental system.In order for a uniform field of cells to differentiate into a reproducible pattern of organs and tissues, cells need to receive information about their position within the field. During development, positional information is often conveyed by spatial gradients of morphogens (Wolpert 1989). In the presence of such gradients, cells are subject to different levels of morphogen, depending on their positions within the field, and activate, accordingly, one of several gene expression cassettes. The quantitative shape of the morphogen gradient is critical for patterning, with cell-fate boundaries established at specific concentration thresholds. Although these general features of morphogen-based patterning are universal, the range and form of the morphogen profile, and the pattern of induced target genes, vary significantly depending on the tissue setting and the signaling pathways used.The formation of a morphogen gradient is a dynamic process, influenced by the kinetics of morphogen production, diffusion, and degradation. These processes are tightly controlled through intricate networks of positive and negative feedback loops, which shape the gradient and enhance its reproducibility between individual embryos and developmental contexts. In the past three decades, many of the components comprising the morphogen signaling cascades have been identified and sorted into pathways, enabling one to start addressing seminal questions regarding their functionality: How is it that morphogen signaling is reproducible from one embryo to the next, despite fluctuations in the levels of signaling components, temperature differences, variations in size, or unequal distribution of components between daughter cells? Are there underlying mechanisms that assure a reproducible response? Are these mechanisms conserved across species, similar to the signaling pathways they control?In this review, we outline insights we gained by quantitatively analyzing the process of morphogen gradient formation. We focus on mechanisms that buffer morphogen profiles against fluctuations in gene dosage, and describe general means by which such buffering is enhanced. These mechanisms include self-enhanced morphogen degradation and pre-steady-state decoding. In addition, we describe a more specific “shuttling” mechanism that is used to generate a sharp and robust profile of a morphogen activity from a source that is broadly produced. We discuss the implication of the shuttling mechanism for the ability of embryos to adjust their pattern with size. Finally, we consider the transformation of the smooth gradient profile into sharp borders of gene expression in the signal-receiving cells.  相似文献   

17.
Activin as a morphogen in Xenopus mesoderm induction.   总被引:3,自引:0,他引:3  
Activin, a member of the Transforming Growth Factor beta (TGF-beta) superfamily, can behave as a morphogen in cells of the early Xenopus embryo by inducing a range of mesodermal genes in a concentration-dependent manner. This review examines the behaviour of activin as it forms a morphogen gradient. It also discusses how a cell can perceive its position in a concentration gradient in order to activate appropriate mesodermal gene responses.  相似文献   

18.
Sequential segmentation during embryogenesis involves the generation of a repeated pattern along the embryo, which is concurrently undergoing axial elongation by cell division. Most mathematical models of sequential segmentation involve inherent cellular oscillators, acting as a segmentation clock. The cellular oscillation is assumed to be governed by the cell's physiological age or by its interaction with an external morphogen gradient. Here, we address the issue of when cellular oscillators alone are sufficient for predicting segmentation, and when a morphogen gradient is required. The key to resolving this issue lies in how cells determine positional information in the model - this is directly related to the distribution of cell divisions responsible for axial elongation. Mathematical models demonstrate that if axial elongation occurs through cell divisions restricted to the posterior end of the unsegmented region, a cell can obtain its positional information from its physiological age, and therefore cellular oscillators will suffice. Alternatively, if axial elongation occurs through cell divisions distributed throughout the unsegmented region, then positional information can be obtained through another mechanism, such as a morphogen gradient. Two alternative ways to establish a morphogen gradient in tissue with distributed cell divisions are presented - one with diffusion and the other without diffusion. Our model produces segment polarity and a distribution of segment size from the anterior-to-posterior ends, as observed in some systems. Furthermore, the model predicts segment deletions when there is an interruption in cell division, just as seen in heat shock experiments, as well as the growth and final shrinkage of the presomitic mesoderm during somitogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号